TOSHIBA

Leading Innovation >>>

Core Partitioning Technique
on Multicore Linux Systems

Kouta Okamoto, TOSHIBA Corporation
Japan Technical Jamboree 63
Dec 1st, 2017

© 2017 Toshiba Corporation

Agenda

e Background

e Core Partitioning for User Processes
e Core Partitioning for Interrupts

o Core Partitioning for Kernel Threads
e Executing a Realtime Application

e Evaluating latency with cyclictest

TOSHIBA

© 2017 Toshiba Corporation 2
Leading Innovation >>>

Agenda

e Background

TOSHIBA © 2017 Toshiba Corporation 3

Leading Innovation >>>

Background

e Multicore CPUs became available for embedded
systems
- Intel Apollolake
— Rasphberry pi 3

e Advanced Requirments came up
— Realtime Applications .
« need to satisfy deadlines
« E.g. controller
— General Purpose Applications
« provide additional value
« E.g. http server

Run them on one board

TOSHIBA © 2017 Toshiba Corporation 4

Leading Innovation >>>

Example: a 4-core system on General Linux

daemon RT GP
User Process Application JApplicationl

Linux Kernel
Kernel Thread

Device Device
Interrupt Driver Driver

Filesystem

Manager

driver Interrupt
handler

Board

Interrupt []

TOSHIBA © 2017 Toshiba Corporation 5

Leading Innovation >>>

Example: a 4-core system on General Linux

a N -

Ext3 Linux Kernel
Kernel Thread Filesystem
on the same core as the RT Application
Device Device
Driver Driver -

driver Interrupt W
handler

Board

Interrupt J

TOSHIBA © 2017 Toshiba Corporation 6

Leading Innovation >>>

Goal of Core Partitioning

I | |
daemon | RT |
User Process : Application | :
| I
I

lLinux Kernel
Filesystem

Kernel Thread

Block I/O
Manager

—————————

Device
Interrupt Driver

driver Interrupt
handler Core 1

Interrupt | | |

TOSHIBA © 2017 Toshiba Corporation 7

Leading Innovation >>>

Goal of Core Partitioning

daemon RT
User Process
A S
e Linux Kernel
Kernel Thread Filesystem

RT Application running alone on Core 1

Device
Interrupt Driver

driver Interrupt -
handler Core 0 Corel

Interrupt

S |
Rs232C f

TOSHIBA © 2017 Toshiba Corporation 8

Leading Innovation >>>

Agenda

e Core Partitioning for User Processes

TOSHIBA © 2017 Toshiba Corporation 9

Leading Innovation >>>

Core Partitioning for User Process

-

|
daemon |
User Process :

TOSHIBA

Leading Innovation >>>

RT

Application

© 2017 Toshiba Corporation 10

CPU affinity for user process

e Default CPU affinity for user process
— Runnable on all CPU Core

taskset —p 1
pid 1"s current affinity mask:

e Change default CPU affinity for user process
— kernel arguments to set user process CPU affinity to Core 0(avoid 1-3)

I solcpus=1-3

e Check Result
— Only Runnable on Core O

taskset —p 1
pid 1"s current affinity mask:

—

TOSHIBA © 2017 Toshiba Corporation 11

Leading Innovation >>>

Agenda

e Core Partitioning for Interrupts

TOSHIBA © 2017 Toshiba Corporation 12

Leading Innovation >>>

Core Partitioning for Interrupt

Device
Interrupt Driver

driver Interrupt
handler

Interrupt | | |
N oo J| we Jf e | Y,

TOSHIBA © 2017 Toshiba Corporation 13

Leading Innovation >>>

CPU affinity for interrupt

o Default CPU affinity for interrupt
— Interruptible on all CPU

cat /proc/irq/0/smp_affinity

e Change CPU affinity for interrupt
— Change each interrupt CPU affinity to Core 0

for file in "find /proc/irq —name “smp_affinity list” ; do ¥

echo 0 > ${file} 2>/dev/null; ¥
done

— Change default CPU affinity for interrupt to Core 0

echo 1 > /proc/irq/default_smp_affinity

e Check Result
— Only Interruptible on Core O

cat /proc/irq/0/smp_affinity

TOSHIBA © 2017 Toshiba Corporation 14

Leading Innovation >>>

CPU affinity for driver interrupt handler

e Driver interrupt handler

— In default, driver interrupt handler will be executed in irqg context.
— It may cause amount of latency, because irq context is not preemptible.

e Change driver interrupt handler to kernel thread

— kernel argument to change the way to execute interrupt handler from irg
context to kernel thread.

threadirgs

e Check Result

- The interrupt kernel thread will be created such as “irg/<interrupt
number>-<driver name>"

PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
1 0.0 0.1 28988 5272 ? Ss 13:40 0:00 /sbin/init

206 0.0 O. ‘ S 13:40
207 0.0 O. ‘ S 13:40
209 0.0 O. ‘ S 13:40

L J

TOSHIBA © 2017 Toshiba Corporation 15

Leading Innovation >>>

Agenda

o Core Partitioning for Kernel Threads

TOSHIBA © 2017 Toshiba Corporation 16

Leading Innovation >>>

Core Partitioning for Kernel Thread

e lLinux Kernel
Kernel Thread Filesystem

Block I/O
\ Manager

TOSHIBA © 2017 Toshiba Corporation 17

Leading Innovation >>>

CPU affinity for kernel thread

o Default CPU affinity for kernel thread
— Almost kernel thread are runnable on all CPU Core
« CPU affinity for these thread can be changed by some way
- taskset
- cgroup <- select

e The way to use cgroup
1. direct access to cgroup filesystem
2. use libcgroup package
3. use cpuset package <- select
« The reason of this select is simplicity of cset command

e Change CPU affinity for kernel thread

- Following command create grgup “cpu0” to run on Core0, and move all thread which
include not only user process but also kernel thread to “cpu0” group.

cset set —s cpu0 —c 0

cset proc -m -k —force —f root -t cpul

— NOTE: init process should be on root group. Changing cgroup for init process cause
wrong affect for container tool such as Ixc.

cset proc -m -p 1 -f cpul -t root

taskset -p 11

TOSHIBA

Leading Innovation >>>

© 2017 Toshiba Corporation 18

CPU affinity for kernel thread

e Limitation of kernel thread CPU affinity
— CPU bound kernel threads

« Some kernel threads are bound to specified CPU cores. The CPU affinity of
these threads can’t be changed.
« e.qg.
— CPU bound kernel thread is named such as “<name>/<core number>"
ps aux

USER PID %CPU %MEM RSS TTY STAT START TIME COMMAND
root 1 0. : 5472 7 09:25 0:01 /sbin/init

root 9 0.0 0. . 09:25

root 10 0.) ‘ 09:25
root 11 0.) ‘ 09:25
root 12 0.) ‘ 09:25
root 13 0.) ‘ 09:25

— Dynamically created kernel thread

- Some kernel thread are dynamically created on demand. If these thread
will be clqeglg%d after setting of change kernel thread CPU affinity, it can be
run at a :

- e.q.
— kjournald will be created at the time of mount ext4 filesystem.

TOSHIBA

Leading Innovation >>>

© 2017 Toshiba Corporation 19

CPU affinity for worker thread

e What is a worker thread.

- Workqueue is a delayed processing framework in Linux kernel. Worker threads have the
responsibility to execute delayed callback handlers.

— Woker thread have also two type, CPU bound and CPU unbound. CPU bound thread is named
such as “kworker/<core number>:<id>". CPU unbound thread is named such as
“kworker/u<pool number>:<id>".

- e.q.

« [kworker/0:1] is CPU bound worker thread.
« [kworker/u8:2] is CPU unbound worker thread.

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 29460 5472 ? Ss 09:25 0:01 /sbin/init

root 16 0.0 0.0 0 02 S 09:25 0:05 [

root 114 0.0 0.0 S 09:25 0:00 [
« [kworker/0:1] is runnable on CPU Core 0

taskset -p 16
pid 16" s current affinity mask:

« [kworker/u8:2] is runnable on All CPU Core

taskset —p 114
pid 114" s current affinity mask:

TOSHIBA © 2017 Toshiba Corporation 20

Leading Innovation >>>

CPU affinity for worker thread

e Change CPU affinity for workqueue
- Change workqgqueue CPU affinity to Core 0
« NOTE: In my machine, workqueue which have controllable cpumask is only “writeback”.

#t for file in "find /sys/devices/virtual/workqueue “cpumask””; do ¥

echo 1 > ${file} 2>/dev/null; ¥
done

- Change default CPU affinity for worker thread to Core 0

echo 1 > /sys/devices/virtual/workqueue/cpumask

e Check Result

- new kworker kernel thread which have responsibility for above workqueue will be created.
« [kworker/u9:0] is new worker thread.

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 29460 5472 ? Ss 09:25 0:01 /sbin/init
root 16 0.0 0.0 0 02 S 09:25 0:05 [kworker/0:1]

root 114 0.0 0.0 0 02 S 09:25 0:00 [kworker/u8:2]

root 1014 0.0 0.0 0 02 S 09:25 0:00 [I

* [kworker/u9:2] is runnable on CPU Core 0

taskset -p 1014
pid 1014’ s current affinity mask:

TOSHIBA © 2017 Toshiba Corporation

Leading Innovation >>>

21

Default CPU affinity for kernel thread
e Default CPU affinity for kernel thread

— It can’t be changed in current Linux kernel
— This is limitation for dynamically created kernel thread
« We need to care such kernel thread like kjournald.

-

TOSHIBA © 2017 Toshiba Corporation 22

Leading Innovation >>>

Patch for changing default CPU affinity for kernel thread(1/2)

diff —git a/kernel/kthread. ¢ b/kernel/kthread. ¢
index 760e86d. .2396194 100644

——— a/kernel/kthread. ¢

+++ b/kernel /kthread. ¢

@@ -23,6 +23,8 @@

static DEFINE_SPINLOCK (kthread_create_lock) ;
static LIST_HEAD (kthread_create_list);

struct task_struct *kthreadd_task;

+static int enable_kthread_default_cpumask = 0;
+static struct cpumask kthread_default_cpumask;

struct kthread_create_info

{
0@ -282,7 +284, 11 @@ struct task_struct kkthread_create_on_node(int (*threadfn) (void *data),

* The kernel thread should not inherit these properties.
*/
sched_setscheduler_nocheck (create. result, SCHED_NORMAL, ¶m);
o set_cpus_al lowed_ptr (create. result, cpu_all_mask) ;
if (enable_kthread_default_cpumask) {
set_cpus_al lowed_ptr (create. result, &kthread_default_cpumask) ;

} else {

}

set_cpus_al lowed_ptr (create. result, cpu_all_mask) ;

FF F F T

}

return create.result;

}

(@@ -450,7 +456, 11 @@ int kthreadd(void *unused)

/* Setup a clean context for our children to inherit. */
set_task_comm (tsk, “kthreadd”);

ignore_signals (tsk) :

TOSHIBA © 2017 Toshiba Corporation 23

Leading Innovation >>>

Patch for changing default CPU affinity for kernel thread(2/2)

set_cpus_al lowed_ptr (tsk, cpu_all_mask) ;
if (enable_kthread_default_cpumask) {
set_cpus_al lowed_ptr (tsk, &kthread_default_cpumask) ;

} else {

}
set_mems_al | owed (node_states [N_MEMORY]) ;

set_cpus_al lowed_ptr (tsk, cpu_all_mask) ;

FF F F F 0

current—->flags |= PF_NOFREEZE;

0@ —-653,3 +663, 16 @@ void flush_kthread_worker (struct kthread_worker *worker)
wait_for_completion (&fwork. done) ;

}

EXPORT_SYMBOL_GPL (flush_kthread_worker) ;

+
+static int __init kthread_default_cpumask_setup (char *str)

e

+ int ret;

"

2 ret = cpumask_parse (str, &kthread_default_cpumask) :
- if (lret)

+ enable_kthread_default_cpumask = 1;

"

+ return 1;

+l

+
+ setup ("kthread_default_cpumask=", kthread_default_cpumask_setup) :

TOSHIBA © 2017 Toshiba Corporation 24

Leading Innovation >>>

Agenda

e Executing a Realtime Application

TOSHIBA © 2017 Toshiba Corporation 25

Leading Innovation >>>

Execute Application process by cgroup

o All user process are running on Core 0

— Already default CPU affinity is changed
— We hope that our application run on Core 1.

. ggroups enable executing our application on a specified
ore

— We use cset command like kernel thread CPU affinity settings.

o Example
— Do command such as following

cset set -s cpul —c 1

cset proc —s cpul -e — <command>

TOSHIBA © 2017 Toshiba Corporation 26

Leading Innovation >>>

Agenda

e Evaluating latency with cyclictest

TOSHIBA

Leading Innovation >>>

© 2017 Toshiba Corporation 27

Evaluate latency by cyclictest

e What is Cyclictest?

Benchmark tool for interval timer latency.

- Cyclictest thread is woken up periodically with a defined interval by an expiring timer.
CaIIICLéraEe dlfference between the programmed and the effective wake-up time. This time
calle atency”.

« Refer: https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

=P Programmed time
—) \Wake-up time
Y Y Y 4P | atency

—

e Cyclictest argument
— Run cyclictest wit following arguments.

Interval 300us, 500us, 1000us
task priority FIFO 98
sample number 1000000

- Get latency histogram by following command.

cyclictest —g -m -i399 -p98 -11000000 -h1000

TOSHIBA © 2017 Toshiba Corporation 28

Leading Innovation >>>

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

Evaluate latency by cyclictest

e Environment
- Evaluate machine spec.

CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 4core
Memory 4GB
(ON Debian GNU/Linux 8.8.0(jessie)

e Load program
- Run load program in background such as following.

stresss-no no load program

stress-cpu 150 thread execute such as following.
while (1) {

usleep(1);
}

stress-io 150 thread execute such as following.
while (1) {

write(file) with O_SYNC;

uspeep(1);
}

e Core Partitioning
- OFF
« All CPU affinity settings are default.
- ON
« CPU affinity of cyclictest is on Core 1.
« CPU affinity of all other processes is on Core 0.

TOSHIBA © 2017 Toshiba Corporation 29

Leading Innovation >>>

Core partitioning off
e 300us periodic

Cyclicte:300us
1000000
800000 -+ I
z 600000 -
§ == stress-no
g == stress-cpu
w 400000 -+
stress-io
200000 -+
. LN SN R e
0 16 32 48 64 80
Latency(us)
stress—no stress—cpu stress—io
MAX 11 28 67
MIN 1 1 1
AVG 3 13 1
TOSHIBA © 2017 Toshiba Corporation 30

Leading Innovation >>>

Core partitioning off
e 500us periodic

Cyclicte:500us
1000000
800000 —+ I
> 600000 +
§ == stress-no
g == stress-cpu
w 400000 -
stress-io
200000 -+
| {-ﬂhﬁ | N
0 ‘. N\
0 16 32 48 64 80
Latency(us)
stress—no stress—cpu stress—io
MAX 16 28 72
MIN 1 2 1
AVG 3 13 1
TOSHIBA © 2017 Toshiba Corporation 31

Leading Innovation >>>

Core partitioning off
e 1000us periodic

Cyclicte:1000us
1000000
800000 - I
z 600000 -+
§ == stress-no
§ == stress-cpu
w 400000 -+
stress-io
200000 -+
0 _Mvvvvv - A r\
O/
0 16 32 48 64 80
Latency(us)
stress—no stress—cpu stress—io
MAX 10 28 67
MIN 1 3 1
AVG 3 13 1
TOSHIBA © 2017 Toshiba Corporation 32

Leading Innovation >>>

Core partitioning on
e 300us periodic

Cyclicte:300us
1000000 \
800000 \ /A\
z 600000
§ \ == stress-no
g \ == stress-cpu
w 400000
\ / \ stress-io
200000 | \
0 J L =" X i
0 2 4 6 8 10
Latency(us)
stress—no stress—cpu stress—io
MAX 7 5 10
MIN 1 1 1
AVG 2 1 1
TOSHIBA © 2017 Toshiba Corporation 33

Leading Innovation >>>

Core partitioning on
e 500us periodic

Cyclicte:500us
1000000 \
800000 \ /A\
z 600000
§ \ === stress-no
§ \ == stress-cpu
w 400000
\ / \ stress-io
200000 I \
0 & A o O
0 2 4 6 8 10
Latency(us)
stress—no stress—cpu stress—io
MAX 7 5 9
MIN 2 1 1
AVG 2 1 1
TOSHIBA © 2017 Toshiba Corporation 34

Leading Innovation >>>

Core partitioning on
e 1000us periodic

Cyclicte:1000us

1000000 \
800000 A
600000
\ == stress-no
‘ == stress-cpu

400000

\ / \ stress-io
200000 I &
0 v — ©®

Frequency

0 2 4 6 8 10
Latency(us)
stress—no stress—cpu stress—io
MAX 9 5 6
MIN 2 1 1
AVG 3 1 1
TOSHIBA © 2017 Toshiba Corporation 35

Leading Innovation >>>

Results

e Core Partition off
- MAX 72us latency

e Core Partition on
- MAX 10 us latency

We can keep low latency for realtime application

by Core Partitioning!!

TOSHIBA © 2017 Toshiba Corporation 36

Leading Innovation >>>

TOSHIBA

Leading Innovation >>>

