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• Multicore CPUs became available for embedded 
systems

– Intel Apollolake

– Rasphberry pi 3

• Advanced Requirments came up

– Realtime Applications

• need to satisfy deadlines

• E.g. controller

– General Purpose Applications

• provide additional value

• E.g. http server

Background

Run them on one board
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Goal of Core Partitioning
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Core Partitioning for User Process

Linux Kernel
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• Default CPU affinity for user process
– Runnable on all CPU Core

• Change default CPU affinity for user process
– kernel arguments to set user process CPU affinity to Core 0(avoid 1-3)

• Check Result
– Only Runnable on Core 0

CPU affinity for user process

# taskset -p 1
pid 1's current affinity mask: f

# taskset -p 1
pid 1's current affinity mask: 1

isolcpus=1-3

Does not affect to kernel thread!!
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Core Partitioning for Interrupt

Linux Kernel
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• Default CPU affinity for interrupt
– Interruptible on all CPU

• Change CPU affinity for interrupt
– Change each interrupt CPU affinity to Core 0

– Change default CPU affinity for interrupt to Core 0

• Check Result
– Only Interruptible on Core 0

CPU affinity for interrupt

# cat /proc/irq/0/smp_affinity
f

# for file in `find /proc/irq -name "smp_affinity_list"`; do ¥
echo 0 > ${file} 2>/dev/null; ¥

done

# echo 1 > /proc/irq/default_smp_affinity

# cat /proc/irq/0/smp_affinity
1
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• Driver interrupt handler
– In default, driver interrupt handler will be executed in irq context.

– It may cause amount of latency, because irq context is not preemptible.

• Change driver interrupt handler to kernel thread
– kernel argument to change the way to execute interrupt handler from irq

context to kernel thread.

• Check Result
– The interrupt kernel thread will be created such as “irq/<interrupt 

number>-<driver name>”

CPU affinity for driver interrupt handler

threadirqs

# ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.1  28988  5272 ?        Ss 13:40   0:00 /sbin/init
... 
root       206  0.0  0.0      0     0 ?        S    13:40   0:00 [irq/16-ehci_hcd]
root       207  0.0  0.0      0     0 ?        S    13:40   0:00 [irq/23-ehci_hcd]
root       209  0.0  0.0      0     0 ?        S    13:40   0:00 [irq/12-i8042]

irq handler already executed by kernel thread.

CPU affinity of them can be changed. See after next slide.
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Core Partitioning for Kernel Thread
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• Default CPU affinity for kernel thread
– Almost kernel thread are runnable on all CPU Core

• CPU affinity for these thread can be changed by some way

– taskset

– cgroup <- select

• The way to use cgroup
1. direct access to cgroup filesystem

2. use libcgroup package

3. use cpuset package <- select

• The reason of this select is simplicity of cset command

• Change CPU affinity for kernel thread
– Following command create grpup “cpu0” to run on Core0, and move all thread which 

include not only user process but also kernel thread to “cpu0” group.

– NOTE: init process should be on root group. Changing cgroup for init process cause 
wrong affect for container tool such as lxc.

CPU affinity for kernel thread

# cset set -s cpu0 -c 0
# cset proc -m -k --force -f root -t cpu0

# cset proc –m –p 1 –f cpu0 –t root
# taskset –p 1 1
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• Limitation of kernel thread CPU affinity
– CPU bound kernel threads

• Some kernel threads are bound to specified CPU cores. The CPU affinity of 
these threads can’t be changed.

• e.g.

– CPU bound kernel thread is named such as “<name>/<core number>”

– Dynamically created kernel thread

• Some kernel thread are dynamically created on demand. If these thread 
will be created after setting of change kernel thread CPU affinity, it can be 
run at all CPU.

• e.g.

– kjournald will be created at the time of mount ext4 filesystem.

CPU affinity for kernel thread

# ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.0  29460  5472 ?        Ss 09:25   0:01 /sbin/init
...
root         9  0.0  0.0      0     0 ?        S    09:25   0:00 [migration/0]
root        10  0.0  0.0      0     0 ?        S    09:25   0:00 [watchdog/0]
root        11  0.0  0.0      0     0 ?        S    09:25   0:01 [watchdog/1]
root        12  0.0  0.0      0     0 ?        S    09:25   0:00 [migration/1]
root        13  0.8  0.0      0     0 ?        S    09:25   3:19 [ksoftirqd/1]
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• What is a worker thread.
– Workqueue is a delayed processing framework in Linux kernel. Worker threads have the 

responsibility to execute delayed callback handlers.

– Woker thread have also two type, CPU bound and CPU unbound. CPU bound thread is named 
such as “kworker/<core number>:<id>”. CPU unbound thread is named such as 
“kworker/u<pool number>:<id>”.

– e.g.

• [kworker/0:1] is CPU bound worker thread.

• [kworker/u8:2] is CPU unbound worker thread.

• [kworker/0:1] is runnable on CPU Core 0

• [kworker/u8:2] is runnable on All CPU Core

CPU affinity for worker thread

# ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.0  29460  5472 ?        Ss 09:25   0:01 /sbin/init
...
root        16  0.0  0.0      0     0 ?        S    09:25   0:05 [kworker/0:1]
...
root       114  0.0  0.0      0     0 ?        S    09:25   0:00 [kworker/u8:2]

# taskset -p 16
pid 16's current affinity mask: 1

# taskset -p 114
pid 114's current affinity mask: f
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• Change CPU affinity for workqueue
– Change workqueue CPU affinity to Core 0

• NOTE: In my machine, workqueue which have controllable cpumask is only “writeback”.

– Change default CPU affinity for worker thread to Core 0

• Check Result
– new kworker kernel thread which have responsibility for above workqueue will be created.

• [kworker/u9:0] is new worker thread.

• [kworker/u9:2] is runnable on CPU Core 0

CPU affinity for worker thread

# ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.0  29460  5472 ?        Ss 09:25   0:01 /sbin/init
...
root        16  0.0  0.0      0     0 ?        S    09:25   0:05 [kworker/0:1]
...
root       114  0.0  0.0      0     0 ?        S    09:25   0:00 [kworker/u8:2]
...
root 1014  0.0  0.0      0     0 ?        S    09:25   0:00 [kworker/u9:0]

# for file in `find /sys/devices/virtual/workqueue "cpumask"`; do ¥
echo 1 > ${file} 2>/dev/null; ¥

done

# echo 1 > /sys/devices/virtual/workqueue/cpumask

# taskset -p 1014
pid 1014's current affinity mask: 1
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• Default CPU affinity for kernel thread

– It can’t be changed in current Linux kernel

– This is limitation for dynamically created kernel thread

• We need to care such kernel thread like kjournald.

Default CPU affinity for kernel thread

We attempt to create patch to change default CPU affinity

for kernel thread
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diff --git a/kernel/kthread.c b/kernel/kthread.c
index 760e86d..2396194 100644

--- a/kernel/kthread.c
+++ b/kernel/kthread.c

@@ -23,6 +23,8 @@
static DEFINE_SPINLOCK(kthread_create_lock);

static LIST_HEAD(kthread_create_list);
struct task_struct *kthreadd_task;

+static int enable_kthread_default_cpumask = 0;
+static struct cpumask kthread_default_cpumask;

struct kthread_create_info

{
@@ -282,7 +284,11 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),

* The kernel thread should not inherit these properties.
*/

sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param);
- set_cpus_allowed_ptr(create.result, cpu_all_mask);

+ if (enable_kthread_default_cpumask) {
+ set_cpus_allowed_ptr(create.result, &kthread_default_cpumask);

+ } else {

+ set_cpus_allowed_ptr(create.result, cpu_all_mask);

+ }
}

return create.result;
}

@@ -450,7 +456,11 @@ int kthreadd(void *unused)
/* Setup a clean context for our children to inherit. */

set_task_comm(tsk, "kthreadd");
ignore_signals(tsk);

Patch for changing default CPU affinity for kernel thread(1/2)
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- set_cpus_allowed_ptr(tsk, cpu_all_mask);
+ if (enable_kthread_default_cpumask) {

+ set_cpus_allowed_ptr(tsk, &kthread_default_cpumask);
+ } else {

+ set_cpus_allowed_ptr(tsk, cpu_all_mask);
+ }

set_mems_allowed(node_states[N_MEMORY]);

current->flags |= PF_NOFREEZE;
@@ -653,3 +663,16 @@ void flush_kthread_worker(struct kthread_worker *worker)

wait_for_completion(&fwork.done);
}

EXPORT_SYMBOL_GPL(flush_kthread_worker);
+

+static int __init kthread_default_cpumask_setup(char *str)
+{

+ int ret;
+

+ ret = cpumask_parse(str, &kthread_default_cpumask);
+ if (!ret)

+ enable_kthread_default_cpumask = 1;

+

+ return 1;
+}

+
+__setup("kthread_default_cpumask=", kthread_default_cpumask_setup);

Patch for changing default CPU affinity for kernel thread(2/2)

kernel argument “kthread_default_cpumask=“ can makes change default 

CPU affinity for kernel thread. It looks no problem for now.
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• All user process are running on Core 0
– Already default CPU affinity is changed

– We hope that our application run on Core 1.

• Cgroups enable executing our application on a specified 
Core
– We use cset command like kernel thread CPU affinity settings.

• Example
– Do command such as following

Execute Application process by cgroup

# cset set -s cpu1 -c 1
# cset proc -s cpu1 -e -- <command>
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• What is Cyclictest?
– Benchmark tool for interval timer latency.

– Cyclictest thread is woken up periodically with a defined interval by an expiring timer. 
Calcurate difference between the programmed and the effective wake-up time. This time 
called “Latency”.

• Refer: https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

• Cyclictest argument
– Run cyclictest wit following arguments.

– Get latency histogram by following command.

Evaluate latency by cyclictest

Interval 300us, 500us, 1000us

task priority FIFO 98

sample number 1000000

# cyclictest -q -m –i399 –p98 –l1000000 -h1000

Processing Processing Processing

Programmed time 

Wake-up time 

Latency

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
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• Environment
– Evaluate machine spec.

• Load program
– Run load program in background such as following.

• Core Partitioning
– OFF

• All CPU affinity settings are default. 

– ON

• CPU affinity of cyclictest is on Core 1.

• CPU affinity of all other processes is on Core 0.

Evaluate latency by cyclictest

CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 4core

Memory 4GB

OS Debian GNU/Linux 8.8.0(jessie)

stresss-no no load program

stress-cpu 150 thread execute such as following.

while (1) {

usleep(1); 

}

stress-io 150 thread execute such as following. 

while (1) {

write(file) with O_SYNC;

uspeep(1); 

}
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• 500us periodic
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• 1000us periodic
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• 300us periodic

Core partitioning on
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• 500us periodic
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• 1000us periodic
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• Core Partition off

– MAX 72us latency

• Core Partition on

– MAX 10 us latency

Results

We can keep low latency for realtime application

by Core Partitioning!!



© 2017 Toshiba Corporation 37


