
© 2017 Toshiba Corporation

Core Partitioning Technique
on Multicore Linux Systems

Kouta Okamoto, TOSHIBA Corporation

Japan Technical Jamboree 63

Dec 1st, 2017

© 2017 Toshiba Corporation 2

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 3

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 4

• Multicore CPUs became available for embedded
systems

– Intel Apollolake

– Rasphberry pi 3

• Advanced Requirments came up

– Realtime Applications

• need to satisfy deadlines

• E.g. controller

– General Purpose Applications

• provide additional value

• E.g. http server

Background

Run them on one board

© 2017 Toshiba Corporation 5

Example: a 4-core system on General Linux

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Device

Driver

Block I/O

Manager

Ext3

Filesystem

Device

Driver

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Interrupt

daemon

Interrupt

driver Interrupt

handler

© 2017 Toshiba Corporation 6

Example: a 4-core system on General Linux

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Device

Driver

Block I/O

Manager

Ext3

Filesystem

Device

Driver

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Interrupt

daemon

Interrupt

driver Interrupt

handler

Various processes can run

on the same core as the RT Application

© 2017 Toshiba Corporation 7

Goal of Core Partitioning

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Block I/O

Manager

Ext3

Filesystem

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Device

Driver
Device

Driver

daemon

Interrupt

Interrupt

driver Interrupt

handler

© 2017 Toshiba Corporation 8

Goal of Core Partitioning

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Block I/O

Manager

Ext3

Filesystem

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Device

Driver
Device

Driver

daemon

Interrupt

Interrupt

driver Interrupt

handler

RT Application running alone on Core 1

© 2017 Toshiba Corporation 9

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 10

Core Partitioning for User Process

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Block I/O

Manager

Ext3

Filesystem

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Device

Driver
Device

Driver

daemon

Interrupt

Interrupt

driver Interrupt

handler

© 2017 Toshiba Corporation 11

• Default CPU affinity for user process
– Runnable on all CPU Core

• Change default CPU affinity for user process
– kernel arguments to set user process CPU affinity to Core 0(avoid 1-3)

• Check Result
– Only Runnable on Core 0

CPU affinity for user process

taskset -p 1
pid 1's current affinity mask: f

taskset -p 1
pid 1's current affinity mask: 1

isolcpus=1-3

Does not affect to kernel thread!!

© 2017 Toshiba Corporation 12

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 13

Core Partitioning for Interrupt

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Block I/O

Manager

Ext3

Filesystem

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Device

Driver
Device

Driver

daemon

Interrupt

Interrupt

driver Interrupt

handler

© 2017 Toshiba Corporation 14

• Default CPU affinity for interrupt
– Interruptible on all CPU

• Change CPU affinity for interrupt
– Change each interrupt CPU affinity to Core 0

– Change default CPU affinity for interrupt to Core 0

• Check Result
– Only Interruptible on Core 0

CPU affinity for interrupt

cat /proc/irq/0/smp_affinity
f

for file in `find /proc/irq -name "smp_affinity_list"`; do ¥
echo 0 > ${file} 2>/dev/null; ¥

done

echo 1 > /proc/irq/default_smp_affinity

cat /proc/irq/0/smp_affinity
1

© 2017 Toshiba Corporation 15

• Driver interrupt handler
– In default, driver interrupt handler will be executed in irq context.

– It may cause amount of latency, because irq context is not preemptible.

• Change driver interrupt handler to kernel thread
– kernel argument to change the way to execute interrupt handler from irq

context to kernel thread.

• Check Result
– The interrupt kernel thread will be created such as “irq/<interrupt

number>-<driver name>”

CPU affinity for driver interrupt handler

threadirqs

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 28988 5272 ? Ss 13:40 0:00 /sbin/init
...
root 206 0.0 0.0 0 0 ? S 13:40 0:00 [irq/16-ehci_hcd]
root 207 0.0 0.0 0 0 ? S 13:40 0:00 [irq/23-ehci_hcd]
root 209 0.0 0.0 0 0 ? S 13:40 0:00 [irq/12-i8042]

irq handler already executed by kernel thread.

CPU affinity of them can be changed. See after next slide.

© 2017 Toshiba Corporation 16

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 17

Core Partitioning for Kernel Thread

Linux Kernel

Board

Core 0 Core 1 Core 2 Core 3

Device

Driver

Block I/O

Manager

Ext3

Filesystem

RT

Application

GP

Application1

GP

Application2

HDD NIC RS232C

File File

User Process

Kernel Thread

Device

Driver
Device

Driver

daemon

Interrupt

Interrupt

driver Interrupt

handler

© 2017 Toshiba Corporation 18

• Default CPU affinity for kernel thread
– Almost kernel thread are runnable on all CPU Core

• CPU affinity for these thread can be changed by some way

– taskset

– cgroup <- select

• The way to use cgroup
1. direct access to cgroup filesystem

2. use libcgroup package

3. use cpuset package <- select

• The reason of this select is simplicity of cset command

• Change CPU affinity for kernel thread
– Following command create grpup “cpu0” to run on Core0, and move all thread which

include not only user process but also kernel thread to “cpu0” group.

– NOTE: init process should be on root group. Changing cgroup for init process cause
wrong affect for container tool such as lxc.

CPU affinity for kernel thread

cset set -s cpu0 -c 0
cset proc -m -k --force -f root -t cpu0

cset proc –m –p 1 –f cpu0 –t root
taskset –p 1 1

© 2017 Toshiba Corporation 19

• Limitation of kernel thread CPU affinity
– CPU bound kernel threads

• Some kernel threads are bound to specified CPU cores. The CPU affinity of
these threads can’t be changed.

• e.g.

– CPU bound kernel thread is named such as “<name>/<core number>”

– Dynamically created kernel thread

• Some kernel thread are dynamically created on demand. If these thread
will be created after setting of change kernel thread CPU affinity, it can be
run at all CPU.

• e.g.

– kjournald will be created at the time of mount ext4 filesystem.

CPU affinity for kernel thread

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 29460 5472 ? Ss 09:25 0:01 /sbin/init
...
root 9 0.0 0.0 0 0 ? S 09:25 0:00 [migration/0]
root 10 0.0 0.0 0 0 ? S 09:25 0:00 [watchdog/0]
root 11 0.0 0.0 0 0 ? S 09:25 0:01 [watchdog/1]
root 12 0.0 0.0 0 0 ? S 09:25 0:00 [migration/1]
root 13 0.8 0.0 0 0 ? S 09:25 3:19 [ksoftirqd/1]

© 2017 Toshiba Corporation 20

• What is a worker thread.
– Workqueue is a delayed processing framework in Linux kernel. Worker threads have the

responsibility to execute delayed callback handlers.

– Woker thread have also two type, CPU bound and CPU unbound. CPU bound thread is named
such as “kworker/<core number>:<id>”. CPU unbound thread is named such as
“kworker/u<pool number>:<id>”.

– e.g.

• [kworker/0:1] is CPU bound worker thread.

• [kworker/u8:2] is CPU unbound worker thread.

• [kworker/0:1] is runnable on CPU Core 0

• [kworker/u8:2] is runnable on All CPU Core

CPU affinity for worker thread

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 29460 5472 ? Ss 09:25 0:01 /sbin/init
...
root 16 0.0 0.0 0 0 ? S 09:25 0:05 [kworker/0:1]
...
root 114 0.0 0.0 0 0 ? S 09:25 0:00 [kworker/u8:2]

taskset -p 16
pid 16's current affinity mask: 1

taskset -p 114
pid 114's current affinity mask: f

© 2017 Toshiba Corporation 21

• Change CPU affinity for workqueue
– Change workqueue CPU affinity to Core 0

• NOTE: In my machine, workqueue which have controllable cpumask is only “writeback”.

– Change default CPU affinity for worker thread to Core 0

• Check Result
– new kworker kernel thread which have responsibility for above workqueue will be created.

• [kworker/u9:0] is new worker thread.

• [kworker/u9:2] is runnable on CPU Core 0

CPU affinity for worker thread

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 29460 5472 ? Ss 09:25 0:01 /sbin/init
...
root 16 0.0 0.0 0 0 ? S 09:25 0:05 [kworker/0:1]
...
root 114 0.0 0.0 0 0 ? S 09:25 0:00 [kworker/u8:2]
...
root 1014 0.0 0.0 0 0 ? S 09:25 0:00 [kworker/u9:0]

for file in `find /sys/devices/virtual/workqueue "cpumask"`; do ¥
echo 1 > ${file} 2>/dev/null; ¥

done

echo 1 > /sys/devices/virtual/workqueue/cpumask

taskset -p 1014
pid 1014's current affinity mask: 1

© 2017 Toshiba Corporation 22

• Default CPU affinity for kernel thread

– It can’t be changed in current Linux kernel

– This is limitation for dynamically created kernel thread

• We need to care such kernel thread like kjournald.

Default CPU affinity for kernel thread

We attempt to create patch to change default CPU affinity

for kernel thread

© 2017 Toshiba Corporation 23

diff --git a/kernel/kthread.c b/kernel/kthread.c
index 760e86d..2396194 100644

--- a/kernel/kthread.c
+++ b/kernel/kthread.c

@@ -23,6 +23,8 @@
static DEFINE_SPINLOCK(kthread_create_lock);

static LIST_HEAD(kthread_create_list);
struct task_struct *kthreadd_task;

+static int enable_kthread_default_cpumask = 0;
+static struct cpumask kthread_default_cpumask;

struct kthread_create_info

{
@@ -282,7 +284,11 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),

* The kernel thread should not inherit these properties.
*/

sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m);
- set_cpus_allowed_ptr(create.result, cpu_all_mask);

+ if (enable_kthread_default_cpumask) {
+ set_cpus_allowed_ptr(create.result, &kthread_default_cpumask);

+ } else {

+ set_cpus_allowed_ptr(create.result, cpu_all_mask);

+ }
}

return create.result;
}

@@ -450,7 +456,11 @@ int kthreadd(void *unused)
/* Setup a clean context for our children to inherit. */

set_task_comm(tsk, "kthreadd");
ignore_signals(tsk);

Patch for changing default CPU affinity for kernel thread(1/2)

© 2017 Toshiba Corporation 24

- set_cpus_allowed_ptr(tsk, cpu_all_mask);
+ if (enable_kthread_default_cpumask) {

+ set_cpus_allowed_ptr(tsk, &kthread_default_cpumask);
+ } else {

+ set_cpus_allowed_ptr(tsk, cpu_all_mask);
+ }

set_mems_allowed(node_states[N_MEMORY]);

current->flags |= PF_NOFREEZE;
@@ -653,3 +663,16 @@ void flush_kthread_worker(struct kthread_worker *worker)

wait_for_completion(&fwork.done);
}

EXPORT_SYMBOL_GPL(flush_kthread_worker);
+

+static int __init kthread_default_cpumask_setup(char *str)
+{

+ int ret;
+

+ ret = cpumask_parse(str, &kthread_default_cpumask);
+ if (!ret)

+ enable_kthread_default_cpumask = 1;

+

+ return 1;
+}

+
+__setup("kthread_default_cpumask=", kthread_default_cpumask_setup);

Patch for changing default CPU affinity for kernel thread(2/2)

kernel argument “kthread_default_cpumask=“ can makes change default

CPU affinity for kernel thread. It looks no problem for now.

© 2017 Toshiba Corporation 25

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 26

• All user process are running on Core 0
– Already default CPU affinity is changed

– We hope that our application run on Core 1.

• Cgroups enable executing our application on a specified
Core
– We use cset command like kernel thread CPU affinity settings.

• Example
– Do command such as following

Execute Application process by cgroup

cset set -s cpu1 -c 1
cset proc -s cpu1 -e -- <command>

© 2017 Toshiba Corporation 27

• Background

• Core Partitioning for User Processes

• Core Partitioning for Interrupts

• Core Partitioning for Kernel Threads

• Executing a Realtime Application

• Evaluating latency with cyclictest

Agenda

© 2017 Toshiba Corporation 28

• What is Cyclictest?
– Benchmark tool for interval timer latency.

– Cyclictest thread is woken up periodically with a defined interval by an expiring timer.
Calcurate difference between the programmed and the effective wake-up time. This time
called “Latency”.

• Refer: https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

• Cyclictest argument
– Run cyclictest wit following arguments.

– Get latency histogram by following command.

Evaluate latency by cyclictest

Interval 300us, 500us, 1000us

task priority FIFO 98

sample number 1000000

cyclictest -q -m –i399 –p98 –l1000000 -h1000

Processing Processing Processing

Programmed time

Wake-up time

Latency

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest

© 2017 Toshiba Corporation 29

• Environment
– Evaluate machine spec.

• Load program
– Run load program in background such as following.

• Core Partitioning
– OFF

• All CPU affinity settings are default.

– ON

• CPU affinity of cyclictest is on Core 1.

• CPU affinity of all other processes is on Core 0.

Evaluate latency by cyclictest

CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 4core

Memory 4GB

OS Debian GNU/Linux 8.8.0(jessie)

stresss-no no load program

stress-cpu 150 thread execute such as following.

while (1) {

usleep(1);

}

stress-io 150 thread execute such as following.

while (1) {

write(file) with O_SYNC;

uspeep(1);

}

© 2017 Toshiba Corporation 30

• 300us periodic

Core partitioning off

0

200000

400000

600000

800000

1000000

0 16 32 48 64 80

Fr
e
q
u
e
n
cy

Latency(us)

Cyclicte:300us

stress-no

stress-cpu

stress-io

stress-no stress-cpu stress-io

MAX 11 28 67

MIN 1 1 1

AVG 3 13 1

© 2017 Toshiba Corporation 31

• 500us periodic

Core partitioning off

0

200000

400000

600000

800000

1000000

0 16 32 48 64 80

Fr
e
q
u
e
n
cy

Latency(us)

Cyclicte:500us

stress-no

stress-cpu

stress-io

stress-no stress-cpu stress-io

MAX 16 28 72

MIN 1 2 1

AVG 3 13 1

© 2017 Toshiba Corporation 32

• 1000us periodic

Core partitioning off

0

200000

400000

600000

800000

1000000

0 16 32 48 64 80

Fr
e
q
u
e
n
cy

Latency(us)

Cyclicte:1000us

stress-no

stress-cpu

stress-io

stress-no stress-cpu stress-io

MAX 10 28 67

MIN 1 3 1

AVG 3 13 1

© 2017 Toshiba Corporation 33

• 300us periodic

Core partitioning on

stress-no stress-cpu stress-io

MAX 7 5 10

MIN 1 1 1

AVG 2 1 1

0

200000

400000

600000

800000

1000000

0 2 4 6 8 10

Fr
e
q
u
e
n
cy

Latency(us)

Cyclicte:300us

stress-no

stress-cpu

stress-io

© 2017 Toshiba Corporation 34

• 500us periodic

Core partitioning on

0

200000

400000

600000

800000

1000000

0 2 4 6 8 10

Fr
e
q
u
e
n
cy

Latency(us)

Cyclicte:500us

stress-no

stress-cpu

stress-io

stress-no stress-cpu stress-io

MAX 7 5 9

MIN 2 1 1

AVG 2 1 1

© 2017 Toshiba Corporation 35

• 1000us periodic

Core partitioning on

0

200000

400000

600000

800000

1000000

0 2 4 6 8 10

Fr
e
q
u
e
n
cy

Latency(us)

Cyclicte:1000us

stress-no

stress-cpu

stress-io

stress-no stress-cpu stress-io

MAX 9 5 6

MIN 2 1 1

AVG 3 1 1

© 2017 Toshiba Corporation 36

• Core Partition off

– MAX 72us latency

• Core Partition on

– MAX 10 us latency

Results

We can keep low latency for realtime application

by Core Partitioning!!

© 2017 Toshiba Corporation 37

