
Solving Device Tree Issues

Use of device tree is mandatory for all new ARM systems.
But the implementation of device tree has lagged behind the
mandate. The first priority has been correct function.
Lower priorities include device tree validation and
facilities to debug device tree problems and errors.
This talk will focus on the status of debug facilities,
how to debug device tree issues, and debug tips and tricks.
Suggestions will be provided to driver writers for how to
implement drivers to ease troubleshooting.

 Frank Rowand, Sony Mobile Communications October 6, 2015
 151006_0421

CAUTION
The material covered in this presentation is
kernel version specific

Most information describes 3.16 - 4.3-rc3

In cases where arch specific code is involved,
there will be a bias to looking at arch/arm/

Read this later skip
Any slides with 'skip' in the upper right hand corner
will be skipped over in my talk. They contain
information that will be useful when the slides are
used for reference.

Obligatory Outline
Device tree concepts
DT data life cycle
Comparing Device Tree Objects <----- skip if time short
 - DT at different points in the life cycle
 - the magic of dtdiff
Device Creation, Driver Binding
 - dyndbg
 - dt_stat
 - dtdiff

Why this talk?
Debugging device tree problems is not easy.

Why this talk?
Debugging device tree problems is not easy.

 - tools do not exist or are not sufficient

 - error and warning message may not be
 available or helpful

 - state data is not easy to access and correlate

 - debug process is not well documented

 - add your own reason here

Why this talk?
At the end of this talk, you will know how to:

 - debug some common device tree problems

 - access data to support the debug process

 Debugging some types of device tree
 problems will be easier.

Chapter 1
Device tree concepts

why device tree?
A device tree describes hardware that can not
be located by probing.

what is device tree?
“A device tree is a tree data structure with nodes
that describe the devices in a system.”

“Each node has property/value pairs that describe
the characteristics of the device being represented.”

(source: ePAPR v1.1)

Key vocabulary
node
 - the tree structure
 - contain properties and other nodes

property
 - contains zero or more data values providing
 information about a node

Key vocabulary skip

'compatible' property has pre-defined use

node '/':
 - will be used to match a machine_desc entry

other nodes:
 - will be used to match a driver
 (slight simplification)

.dts - device tree source file
/ { /* incomplete .dts example */
 model = "Qualcomm APQ8074 Dragonboard";
 compatible = "qcom,apq8074-dragonboard";
 interrupt-parent = <&intc>;

 soc: soc {
 compatible = "simple-bus";

 intc: interrupt-controller@f9000000 {
 compatible = "qcom,msm-qgic2";
 interrupt-controller;
 reg = <0xf9000000 0x1000>,
 <0xf9002000 0x1000>; };

 console: serial@f991e000 {
 compatible = "qcom,msm-uartdm-v1.4", "qcom,msm-uartdm";
 reg = <0xf991e000 0x1000>;
 interrupts = <0 108 0x0>; };
 };
};

.dts - Node – a chunk of HW
/ {
 model = "Qualcomm APQ8074 Dragonboard";
 compatible = "qcom,apq8074-dragonboard";
 interrupt-parent = <&intc>;

 soc: soc {
 compatible = "simple-bus";

 intc: interrupt-controller@f9000000 {
 compatible = "qcom,msm-qgic2";
 interrupt-controller;
 reg = <0xf9000000 0x1000>,
 <0xf9002000 0x1000>; };

 console: serial@f991e000 {
 compatible = "qcom,msm-uartdm-v1.4", "qcom,msm-uartdm";
 reg = <0xf991e000 0x1000>;
 interrupts = <0 108 0x0>; };
 };
};

 concept: variable path

.dts - Property – HW attribute
/ {
 model = "Qualcomm APQ8074 Dragonboard";
 compatible = "qcom,apq8074-dragonboard";
 interrupt-parent = <&intc>;

 soc: soc {
 compatible = "simple-bus";

 intc: interrupt-controller@f9000000 {
 compatible = "qcom,msm-qgic2";
 interrupt-controller;
 reg = <0xf9000000 0x1000>,
 <0xf9002000 0x1000>; };

 console: serial@f991e000 {
 compatible = "qcom,msm-uartdm-v1.4", "qcom,msm-uartdm";
 reg = <0xf991e000 0x1000>;
 interrupts = <0 108 0x0>; };
 };
};

 concept: variable name

.dts - Value – HW attribute data
/ {
 model = "Qualcomm APQ8074 Dragonboard";
 compatible = "qcom,apq8074-dragonboard";
 interrupt-parent = <&intc>;

 soc: soc {
 compatible = "simple-bus";

 intc: interrupt-controller@f9000000 {
 compatible = "qcom,msm-qgic2";
 interrupt-controller;
 reg = <0xf9000000 0x1000>,
 <0xf9002000 0x1000>; };

 console: serial@f991e000 {
 compatible = "qcom,msm-uartdm-v1.4", "qcom,msm-uartdm";
 reg = <0xf991e000 0x1000>;
 interrupts = <0 108 0x0>; };
 };
};

 concept: variable value

.dts - Reference
Thomas Pettazzoni's ELC 2014 talk
“Device Tree For Dummies” is an excellent
introduction to

 - device tree source

 - boot loader mechanisms

 - much more!

http://elinux.org/images/f/f9/
 Petazzoni-device-tree-dummies_0.pdf

https://www.youtube.com/watch?v=uzBwHFjJ0vU

DT data life cycle and vocabulary
(source) (compiler) (binary blob)
.dts dtc .dtb

boot dtb' boot vmlinux
loader: image:
 dtb'' [dtb']

 dtb'' FDT
 memory: (flattened
 device tree) linux
 kernel

 EDT
 (expanded
 device tree)

DT data life cycle skip
dtc creates .dtb from .dts

boot loader copies .dtb into memory FDT

Linux kernel reads FDT, creates Expanded DT

 .dtb may be modified by
 build process
 boot loader

 FDT and Expanded DT may be modified by
 Linux kernel

DT data life cycle and vocabulary
(source) (compiler) (binary blob) [overlay]
.dts dtc .dtb .dtb

boot dtb' boot vmlinux
loader: image:
 dtb'' [dtb']

 dtb'' FDT
 memory: (flattened
 device tree) linux
 kernel

 EDT
 (expanded
 device tree)

DT data life cycle (overlay)
dtc creates .dtb from .dts and .dtsi

Linux kernal reads overlay, modifies Expanded DT

 Overlay .dtb may be modified by
 ???

 Expanded DT may be modified by
 Linux kernel

Overlay architecture and implementation
still under development.

Chapter 2
Comparing Device Tree Objects

Skipping forward
about 67 slides
 The stuff I am skipping is valuable and
 interesting. But I had to choose a big
 section to leave out due to lack of time...

Suspicion
When debugging

 I do not trust anything

 I suspect everything

Suspicion
When debugging

 I do not trust anything

 I suspect everything

 How do I know if my Expanded Device Tree
 matches what is in my device tree source?

Suspicion
When debugging

 I do not trust anything

 I suspect everything

 How do I know if my Expanded Device Tree
 matches what is in my device tree source?

 If I expected the bootloader to alter the .dtb,
 how do I verify the changes?

Compare DT source to EDT
$ dtdiff qcom-apq8074-dragonboard.dts base | wc -l
282

$ # lines added
$ dtdiff qcom-apq8074-dragonboard.dts base \
 | grep “^+” | wc -l
39

$ # lines removed
$ dtdiff qcom-apq8074-dragonboard.dts base \
 | grep “^-” | wc -l
32

 diff host device tree source with target EDT

Compare DT source to EDT
$ dtdiff qcom-apq8074-dragonboard.dts base | wc -l
282

 That is too big a diff to fit on one slide.

 I will instead diff at different points in
 the DT data life cycle to see if I can
 create smaller diff results that will be
 easier to examine and understand.

Can I trust dtc?
$ dtdiff qcom-apq8074-dragonboard.dts \
 qcom-apq8074-dragonboard.dtb
@@ -13,2 +13,2 @@
- kraitcc: clock-controller {
+ clock-controller {
@@ -30,7 +30,7 @@=
- cpu0: cpu@0 {
+ cpu@0 {

... and many more ...

 diff host device tree source with host .dtb

Can I trust dtc?
$ dtdiff qcom-apq8074-dragonboard.dts \
 qcom-apq8074-dragonboard.dtb \
 | grep "^+" | wc -l
31

$ dtdiff qcom-apq8074-dragonboard.dts \
 qcom-apq8074-dragonboard.dtb \
 | grep "^-" | wc -l
31

Same number of lines added and deleted in diff.

Visual inspection verifies that all changes are
removing a label from a node.

Can I trust boot image build
and the bootloader?
$ dtdiff qcom-apq8074-dragonboard.dtb dragon_sys_fdt
@@ -11,2 +11,5 @@
 chosen {
+ bootargs = "console=ttyMSM0,115200,n8 and
+ linux,initrd-end = <0x2918456>;
+ linux,initrd-start = <0x2000000>;
 };
@@ -147,5 +150,5 @@
 memory {
 device_type = "memory";
- reg = <0x0 0x0>;
+ reg = <0x0 0x40000000 0x40000000 0x400000
 };

 diff host .dtb with target FDT

Can I trust Linux?
$ dtdiff dragon_sys_fdt base
@@ -7,2 +7,6 @@
+ __local_fixups__ {
+ };
+
 aliases {
+ testcase-alias = "/testcase-data";
 };

 diff target FDT with target EDT

Full Disclosure skip
1) The content of the previous diffs are modified
 so they will fit on slides.

2) I removed the /testcase-data node from the
 target EDT before each diff with the target EDT

 The /testcase-data nodes will be present on
 the target if CONFIG_OF_UNITTEST=y

Resources skip
See the entry for this talk on the “Resources” slide
for more details on how to access the DT data at
various stages of the build and boot process.

FDT and EDT are from the target system
 FDT is /sys/firmware/fdt
 EDT is /proc/device-tree
 (currently a link to /sys/firmware/devicetree/base)

Takeaway
A diff tool exists to examine how the device
tree data is modified in the build, boot loader,
and boot process.

dtdiff

 Wait a minute!!!

 What is this tool?

 Where do I get it?

 Why don't I just use 'diff'?

dtdiff - What is this tool?
dtdiff compares device trees in various formats

 - source (.dts and the .dtsi includes)

 - dtb (binary blob)

 - file system tree

For one source device tree

 - pre-process include file directives and create
 resulting source (that is, converts .dts files
 and included .dtsi files into a single .dts)

dtdiff - Where do I get it?
It might be packaged for your distribution:

 device-tree-compiler
 dtc

The maintainer's git repo:

 git clone git://git.kernel.org/pub/scm/utils/dtc/dtc.git

dtdiff - Where do I get it?
dtdiff uses the dtc compiler to convert each
input device tree to .dts format

Note that the Linux kernel build process uses its
own version of the dtc compiler, built from the
Linux kernel source tree:

 ${KBUILD_OUTPUT}/scripts/dtc/dtc

Make sure you use this version of dtc, not the
version from your distro.

dtdiff - Where do I get it?
WARNING: the current version does not properly
handle #include and /include/ for .dts and .dtsi files
in the normal locations in the Linux kernel source
tree.

Work In Progress patch to fix this and to add the
pre-process single .dts file feature is at:

 http://elinux.org/Device_Tree_frowand
 http://elinux.org/images/a/a3/Dtdiff_add_cpp.patch

dtdiff - Why don't I just use 'diff'?
Device tree .dtb files are binary files. diff does
not work on binary files.

dtdiff - Why don't I just use 'diff'?
Device tree file system trees are nested directories
containing a mix of ascii and binary files. You can
normally use diff on ascii files but DT fs trees are
produced from /proc/device-tree and are not '\n'
terminated, so diff treats them as binary files (use
diff -a or --text.)

dtdiff - Why don't I just use 'diff'?
Device tree .dts and .dtsi source files are ascii,
similar to C .c and .h files. You can use diff!

dtdiff - Why don't I just use 'diff'?
real-life answer: Because dtdiff is

 - so much better than diff

 - easier to use than diff

Except in the rare cases where it hides
information that you need!

dtdiff - Why don't I just use 'diff'?
The answer to this question is going to
be a long meandering journey through many
slides. I may speed through many of those
slides today but suggest you read them later
at your leisure.

dtdiff meander - how C compiles
$ cat v1/dup.c
#include <stdio.h>

const int model = 1;

main() {
 printf("model is: %d\n", model);
};

$ gcc v1/dup.c

$./a.out
model is: 1

dtdiff meander - how C compiles
$ diff -u v1/dup.c v2/dup.c
--- v1/dup.c
+++ v2/dup.c
@@ -1,6 +1,7 @@
 #include <stdio.h>

 const int model = 1;
+const int model = 2;

 main() {
 printf("model is: %d\n", model);

dtdiff meander - how C compiles
$ gcc v2/dup.c
v2/dup.c:4:11: error: redefinition
 of 'model'

 The C language does not allow redefinition
 of a variable.

dtdiff meander - how dtc compiles
$ cat v1/test.dts
/dts-v1/;

/ {
model = "model_1";
compatible = "test";

c {
model = "model_c";

};
};

/ {
model = "model_3";
compatible = "test";

a {
model = "model_a";

};
};

dtdiff meander - how dtc compiles
1) Compile from v1/test.dts to v1/test.dtb

2) De-compile from v1/test.dtb to v1/dcmp.dts

$ dtc -O dtb -I dts -o v1/test.dtb v1/test.dts

$ dtc -O dts -I dtb -o v1/dcmp.dts v1/test.dtb

dtdiff meander - how dtc compiles
$ cat v1/dcmp.dts
/dts-v1/;

/ {
model = "model_3";
compatible = "test";

c {
model = "model_c";

};

a {
model = "model_a";

};
};

dtdiff meander - how dtc compiles
$ dtdiff v1/test.dts v1/test.dtb
$ dtdiff v1/test.dts v1/dcmp.dts

dtdiff says all 3 objects are the same

 v1/test.dts source

 v1/test.dtb compiled from source

 v1/dcmp.dts decompiled from .dtb

dtdiff meander - how dtc compiles
But diff knows the 'truth':

$ diff -u v1/test.dts v1/dcmp.dts
--- v1/test.dts
+++ v1/dcmp.dts
@@ -1,17 +1,12 @@

 diff original .dts with decompiled .dtb

 shows the transformations by the dtc comiler

dtdiff meander - how dtc compiles
 /dts-v1/;

 / {
- model = "model_1"; <-- removes since redefined
+ model = "model_3"; <-- moved to top of node
 compatible = "test";

 c {
 model = "model_c";
 };
-};
-
-/ { <-- collapses duplicate nodes
- model = "model_3"; <-- move to top of node
- compatible = "test"; <-- move to top of node and
 deletes 1st as redefined
 a {
 model = "model_a";

dtdiff meander - how dtc compiles
$ vimdiff test.dts dcmp.dts

/dts-v1/; | /dts-v1/;
 |
 / { | / {
 model = "model_1"; | model = "model_3";
 compatible = "test"; | compatible = "test";
 |
 c { | c {
 model = "model_c"; | model = "model_c";
 }; | };
 }; | ----------------------------------
 / { | ----------------------------------
 model = "model_3"; | ----------------------------------
 compatible = "test"; | ----------------------------------
 |
 a { | a {
 model = "model_a"; | model = "model_a";
 }; | };
 }; | };

dtdiff meander - how dtc compiles
When a property at a given path occurs multiple
times, the earlier values are discarded and the
latest value encountered is used.

Redefinition of a property is not an error.

dtdiff meander - C vs dtc
C:
 Redefinition of a variable initialization value
 is an error

dtdiff meander - C vs dtc
dtc:
 .dtsi source file describes a HW object which may
 be used in many ways
 When .dts includes a .dtsi, it may need to change
 the general HW description because of how it
 is used in the current system

 Redefinition of properties is a critical and
 common pattern in DT source files

dtdiff meander - C vs dtc
Redefinition of properties in DT source files
means the mental model for comparing two
device trees is often different than for
comparing the source files for two C programs.

dtdiff meander - node/property
 order
Example:

 reverse the order of the two instances of node “/”

dtdiff meander - node/prop order
$ cat v1/test.dts $ cat v2/test.dts

/dts-v1/; /dts-v1/;

/ { / {
 model = "model_1"; model = "model_3";
 compatible = "test"; compatible = "test";
 c { a {
 model = "model_c"; model = "model_a";
 }; };
}; };
/ { / {
 model = "model_3"; model = "model_1";
 compatible = "test"; compatible = "test";
 a { c {
 model = "model_a"; model = "model_c";
 }; };
}; };

dtdiff meander - node/prop order
$ diff -u v1/test.dts v2/test.dts
--- v1/test.dts
+++ v2/test.dts
@@ -1,19 +1,19 @@

diff of text files

 result is cluttered
 hard to determine impact

 (see next slide).

dtdiff meander - node/prop order
@@ -1,19 +1,19 @@
 /dts-v1/;

 / {
- model = "model_1";
+ model = "model_3";
 compatible = "test";

- c {
- model = "model_c";
+ a {
+ model = "model_a";
 };
 };

 / {
- model = "model_3";
+ model = "model_1";
 compatible = "test";

- a {
- model = "model_a";
+ c {
+ model = "model_c";
 };
 };

dtdiff meander - node/prop order
diff of decompiled .dtb files
compile / decompile to remove redundant data

 result is less cluttered,
 easier to understand

(see next slide).

dtdiff meander - node/prop order
$ diff -u \
> <(dtc -I dtb -O dts v1/test.dtb) \
> <(dtc -I dtb -O dts v2/test.dtb)
--- /dev/fd/63
+++ /dev/fd/62
@@ -1,14 +1,14 @@
 /dts-v1/;

 / {
- model = "model_3";
+ model = "model_1";
 compatible = "test";

- c {
- model = "model_c";
- };
-
 a {
 model = "model_a";
 };
+
+ c {
+ model = "model_c";
+ };
 };

dtdiff meander - node/prop order
diff of decompiled .dtb files
add a sort to the decompile step

 result is much less cluttered,
 easier to understand

(see next slide).

dtdiff meander - node/prop order
$ diff -u \
> <(dtc -I dtb -O dts -s v1/test.dtb) \
> <(dtc -I dtb -O dts -s v2/test.dtb)
--- /dev/fd/63
+++ /dev/fd/62
@@ -2,7 +2,7 @@

 / {
 compatible = "test";
- model = "model_3";
+ model = "model_1";

 a {
 model = "model_a";

dtdiff meander - node/prop order
dtdiff adds a sort to the decompile step

 same result as final previous 'diff'
 result is much less cluttered,
 easier to understand

(see next slide).

dtdiff meander - node/prop order
$ dtdiff v1/test.dts v2/test.dts
--- /dev/fd/63
+++ /dev/fd/62
@@ -2,7 +2,7 @@

 / {
 compatible = "test";
- model = "model_3";
+ model = "model_1";

 a {
 model = "model_a";

dtdiff meander - node/prop order
dtdiff adds a sort to the decompile step

 ***** RED FLAG *****

Sometimes order in Expanded DT does matter!!!

 If you are debugging a problem related to
 device creation or driver binding ordering
 then you may want to be aware of changes
 of node order. (Use dtdiff “-u” option)

dtdiff meander - node/prop order
The previous examples of two instances of the
same node in the same file are somewhat
contrived.

But multiple instances of a node in a compilation
unit is an extremely common pattern because of
the conventions for using .dtsi files.

dtdiff meander - .dtsi convention
$ cat v1/acme_hub_full.dtsi <--- common platform
/dts-v1/;
/include/ "acme_serial.dtsi"
/include/ "acme_modem.dtsi"

$ cat v1/acme_serial.dtsi <--- optional serial subsystem
/ {
 serial {
 compatible = "acme,serial-card";
 port_type = "rs-232";
 ports = < 6 >;
 status = "disabled";
 };
};

$ cat v1/acme_modem.dtsi <--- optional modem subsystem
/ {
 modem {
 compatible = "acme,modem-card";
 baud = < 9600 >;
 ports = < 12 >;
 status = "disabled";
 };
};

dtdiff meander - .dtsi convention
$ cat v1/acme_hub_full.dtsi <-- common platform
/dts-v1/;
/include/ "acme_serial.dtsi"
/include/ "acme_modem.dtsi"

$ cat v1/acme_serial.dtsi <-- optional subsys
/ {
 serial {
 compatible = "acme,serial-card";
 port_type = "rs-232";
 ports = < 6 >;
 status = "disabled";
 };
};

dtdiff meander - .dtsi convention
System .dts – enable and customize HW blocks

$ cat v1/acme_hub_cheap.dts
/include/ "acme_hub_full.dtsi"
/ {
 compatible = "acme,hub-cheap";
 serial {
 ports = < 3 >;
 status = "ok";
 };
};

dtdiff meander - .dtsi conventions
$ dtc v1/acme_hub_cheap.dts
/dts-v1/;

/ {
compatible = "acme,hub-cheap";

serial {
compatible = "acme,serial-card";
port_type = "rs-232";
ports = <0x3>;
status = "ok";

};

modem {
compatible = "acme,modem-card";
baud = <0x2580>;
ports = <0xc>;
status = "disabled";

};
};

dtdiff - Why don't I just use 'diff'?

 … and thus ends
 the long meander

Exercise for the advanced student
 Is there a need to extend the
 tools and techniques from this
 section for use with overlays?

Takeaway
- There are many ways that a device tree can
 be changed between the original source and
 the Extended DT in Linux kernel memory.

- DT includes suggest a different mental model
 than for C language includes, when investigating

- dtdiff is a powerful tool for investigating changes,
 but may hide important changes

- In some cases diff is more useful than dtdiff

.dtb <--- .dts (from where?)

 Where did that come from???

.dtb <--- .dts (from where?)

A common problem that dtdiff does not solve:

 A property is defined (and re-defined) in
 multiple .dts and .dtsi files.

 Which of the many source locations is the
 one that ends up in the .dtb?

.dtb <--- .dts (from where?)

current solution:

 scan the cpp output, from bottom to top, for
 the cpp comment that provides the file name
 for the dts fragment of interest

.dtb <--- .dts (from where?)

current solution:

 scan the cpp output, from bottom to top, for
 the cpp comment that provides the file name
 for the dts fragment of interest

cpp output is available at
 ${KBUILD_OUTPUT}/arch/${ARCH}/boot/dts/.XXX.dtb.dts.tmp

 (for XXX.dtb)

.dtb <--- .dts (from where?)

current solution:

example, where does the value of 'status' come
from for pm8941_coincell?

2 "/.../arch/arm/boot/dts/qcom-pm8941.dtsi" 2
...
 pm8941_coincell: qcom,coincell@2800 {
 compatible = "qcom,pm8941-coincell";
 reg = <0x2800>;
 status = "disabled";
...
4 "/.../arch/arm/boot/dts/qcom-apq8074-dragonboard.dts" 2
...
&pm8941_coincell {
 status = "ok";

.dtb <--- .dts (from where?)

current solution:

 scan the cpp output, from bottom to top, …
 for the dts fragment of interest

Incomplete solution:

 - dtc /include/ directive not processed before
 this file is created

 - Intelligence required when searching.
 For example, multiple labels may be
 attached to the node of interest.

.dtb <--- .dts (from where?)

possible future solution:

$ make XXX.dtb

 =====>

 dtc --annotate -O dts \
 -o ${KBUILD_OUTPUT}/arch/${ARCH}/boot/dts/.XXX.annotate.dts.tmp
 ${KBUILD_OUTPUT}/arch/${ARCH}/boot/dts/.XXX.dtb.dts.tmp

Subject: [RFC PATCH v5 0/2]
 dtc: dts source location annotation
To: devicetree-compiler
Date: Wed, 30 Sep 2015

.dtb <--- .dts (from where?)

possible future solution: .XXX.annotate.dts.tmp
pm8941_coincell: qcom,coincell@2800 { /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:70 */
 compatible = "qcom,pm8941-coincell"; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-pm8941.dtsi:14 */
 reg = <0x2800>; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-pm8941.dtsi:15 */
 status = "ok"; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:71 */
 qcom,rset-ohms = <0x834>; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:72 */
 qcom,vset-millivolts = <0xbb8>; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:73 */
 qcom,charge-enable; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:74 */
}; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:75 */

.dtb <--- .dts (from where?) skip

possible future solution: .XXX.annotate.dts.tmp
pm8941_coincell: qcom,coincell@2800 { /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:70 */
 compatible = "qcom,pm8941-coincell"; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-pm8941.dtsi:14 */
 reg = <0x2800>; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-pm8941.dtsi:15 */
 status = "ok"; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:71 */
 qcom,rset-ohms = <0x834>; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:72 */
 qcom,vset-millivolts = <0xbb8>; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:73 */
 qcom,charge-enable; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:74 */
}; /* /local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:75 */

.dtb <--- .dts (from where?)

possible future solution: .XXX.annotate.dts.tmp

pm8941_coincell: qcom,coincell@2800 {
 /* /local/nobackup/src/git_linus/linux--4.2-rc5/
 arch/arm/boot/dts/qcom-apq8074-dragonboard.dts:70 */

.dtb <--- .dts (from where?) skip
possible future solution:

 Remove the clutter by removing the
 leading components of the file path

$ cat make_kernel_source_path
/local/nobackup/src/git_linus/linux--4.2-rc5

$ cat .XXX.dtb.annotate.dts.tmp \
 | sed "s|`cat make_kernel_source_path`/||g" \
 | sed "s|arch/${ARCH}/boot/dts|\$dts|"

.dtb <--- .dts (from where?) skip
possible future solution:

 Remove the clutter by removing the
 leading components of the file path

Commands on the previous slide are equivalent to:

$ cat .XXX.dtb.annotate.dts.tmp | strip_dts_make_path

.dtb <--- .dts (from where?)

possible future solution:

example, where does the value of 'status' come
from for pm8941_coincell?

cat arch/arm/boot/dts/.XXX.dtb.annotate.dts.tmp \
 | strip_dts_make_path

cat arch/arm/boot/dts/.qcom-apq8074-dragonboard.dtb.annotate.dts.tmp \
 | strip_dts_make_path

.dtb ---> .dts
possible future solution:

example, where does the value of 'status' come
from for pm8941_coincell?
/*
 * dts="/local/nobackup/src/git_linus/linux--4.2-rc5/arch/arm/boot/dts/"
 */

pm8941_coincell: qcom,coincell@2800 { /* $dts/qcom-apq8074-dragonboard.dts:70 */
 compatible = "qcom,pm8941-coincell"; /* $dts/qcom-pm8941.dtsi:14 */
 reg = <0x2800>; /* $dts/qcom-pm8941.dtsi:15 */
 status = "ok"; /* $dts/qcom-apq8074-dragonboard.dts:71 */
 qcom,rset-ohms = <0x834>; /* $dts/qcom-apq8074-dragonboard.dts:72 */
 qcom,vset-millivolts = <0xbb8>; /* $dts/qcom-apq8074-dragonboard.dts:73 */
 qcom,charge-enable; /* $dts/qcom-apq8074-dragonboard.dts:74 */
}; /* $dts/qcom-apq8074-dragonboard.dts:75 */

 Skipped to HERE
(go back)

Chapter 3
Debugging Boot Problems

Examples of what can go wrong while trying to:

 - create devices

 - register drivers

 - bind drivers to devices

I will provide
 - some examples of failures at various stages
 - tools and techniques to investigate

DT kernel boot - Reference
Frank Rowand's ELCE 2014 talk:

 devicetree:
 Kernel Internals and Practical Troubleshooting

http://elinux.org/ELC_Europe_2014_Presentations

My pseudocode conventions skip
 Will obviously fail to compile

 Will usually not show function arguments

 Each level of indention indicated either

 body of control statement (if, while, etc)

 entry into function listed on previous line

 Double indentation indicates an intervening
 level of function call is not shown

 Will often leave out many details or fabricate
 specific details in the interest of simplicity

extremely simplified boot
start_kernel()
 pr_notice("%s", linux_banner)
 setup_arch()
 unflatten_device_tree()
 pr_notice("Kernel command line: %s\n", ...)
 init_IRQ()
 ...
 time_init()
 ...
 rest_init()
 kernel_thread(kernel_init, ...)
 kernel_init()
 do_initcalls()
 // device creation, driver binding

Takeaway
do_initcalls() is where

 - devices are created

 - drivers are registered

 - drivers are bound to devices

Initcalls skip
Initcalls occur in this order:

 char *initcall_level_names[] = {
 "early",
 "core",
 "postcore",
 "arch",
 "subsys",
 "fs",
 "device",
 "late",
 }

initcall - of_platform_populate()skip
of_platform_populate(, NULL,,,)
 for each child of DT root node
 rc = of_platform_bus_create(child, matches, lookup, parent, true)
 if (node has no 'compatible' property)
 return
 auxdata = lookup[X], where:
 # lookup[X]->compatible matches node compatible property
 # lookup[X]->phys_addr matches node resource 0 start
 if (auxdata)
 bus_id = auxdata->name
 platform_data = auxdata->platform_data
 dev = of_platform_device_create_pdata(, bus_id, platform_data,)
 dev = of_device_alloc(np, bus_id, parent)
 dev->dev.bus = &platform_bus_type
 dev->dev.platform_data = platform_data
 of_device_add(dev)
 bus_probe_device()
 ret = bus_for_each_drv(,, __device_attach)
 error = __device_attach()
 if (!driver_match_device()) return 0
 return driver_probe_device()
 if (node 'compatible' property != "simple-bus")
 return 0
 for_each_child_of_node(bus, child)
 rc = of_platform_bus_create()
 if (rc) break
 if (rc) break

initcall - of_platform_populate()skip
of_platform_populate(, NULL,,,) /* lookup is NULL */
 for each child of DT root node
 rc = of_platform_bus_create(child,)
 if (node has no 'compatible' property)
 return

 << create platform device for node >>
 << try to bind a driver to device >>

 if (node 'compatible' property != "simple-bus")
 return 0
 for_each_child_of_node(bus, child)
 rc = of_platform_bus_create(child,)
 if (rc) break
 if (rc) break

<< create platform device for node >> skip
<< try to bind a driver to device >>

auxdata = lookup[X], with matches:
 lookup[X]->compatible == node 'compatible' property
 lookup[X]->phys_addr == node resource 0 start
if (auxdata)
 bus_id = auxdata->name
 platform_data = auxdata->platform_data
dev = of_platform_device_create_pdata(, bus_id,
 platform_data,)
 dev = of_device_alloc(, bus_id,)
 dev->dev.bus = &platform_bus_type
 dev->dev.platform_data = platform_data
 of_device_add(dev)
 bus_probe_device()
 ret = bus_for_each_drv(,, __device_attach)
 error = __device_attach()
 if (!driver_match_device())
 return 0
 return driver_probe_device()

initcall - of_platform_populate()skip
 platform device created for

 - children of root node

 - recursively for deeper nodes if 'compatible'
 property == “simple-bus”

 platform device not created if

 - node has no 'compatible' property

initcall - of_platform_populate()skip
 Drivers may be bound to the devices during
 platform device creation if

 - the driver called platform_driver_register()
 from a core_initcall() or a postcore_initcall()

 - the driver called platform_driver_register()
 from an arch_initcall() that was called before
 of_platform_populate()

Creating other devices skip
Devices that are not platform devices were
not created by of_platform_populate().

These devices are typically non-discoverable
devices sitting on more remote busses.
For example:

 - i2c

 - SoC specific busses

Creating other devices skip
Devices that are not platform devices were
not created by of_platform_populate().

These devices are typically created by the
bus driver probe function

Non-platform devices skip
When a bus controller driver probe function
creates the devices on its bus, the device
creation will result in the device probe function
being called if the device driver has already
been registered.

 Note the potential interleaving between
 device creation and driver binding

[What got skipped]
When does driver attempt to bind to device?

 - When the driver is registered
 ---- if the device already exists

 - When the device is created
 ---- if the driver is already registered

 - If deferred on the first attempt, then again later.

Chapter 3.1

Debugging Boot Problems

Examples of what can go wrong while trying to:

 - create devices

 - register drivers

 - bind driver to device

dt_node_info

 Another new tool

 What is this tool?

 Where do I get it?

dt_node_info - What is this tool?
/proc/device-tree and /sys/devices provide visibility
into the state and data of
 - Flattened Device Tree
 - Expanded Device Tree
 - Devices

dt_node_info - What is this tool?
/proc/device-tree and /sys/devices provide visibility
into the state and data of
 - Flattened Device Tree
 - Expanded Device Tree
 - Devices

dt_stat script to probe this information to
 create various reports

dt_node_info packages the information from
 dt_stat in an easy to scan summary

dt_node_info - Where do I get it?
Work In Progress patch is at:

 http://elinux.org/Device_Tree_frowand
 http://elinux.org/images/a/a3/Dt_stat.patch

Dependency:

 requires device tree information to be present in sysfs

Tested:

 only on Linux 4.1-rc2, 4.2-rc5 dragonboard

Might work as early as Linux 3.17. Please let me know
if it works for you on versions before 4.1.

dt_stat - usage:
$ dt_stat --help

usage:
 dt_stat

 -h synonym for --help
 -help synonym for --help
 --help print this message and exit

 --d report devices
 --n report nodes
 --nb report nodes bound to a driver
 --nd report nodes with a device
 --nxb report nodes not bound to a driver
 --nxd report nodes without a device

dt_stat - usage: skip
 Reports about nodes in /proc/device-tree/
 Nodes without a compatible string are not reported

 data fields reported:
 --d Device Node
 --n Node Compatible
 --nb Node Compatible
 --nd Node Compatible Device Driver
 --nxb Node Compatible
 --nxd Node Compatible

dt_stat - example --nb skip
$ dt_stat --nb
/clock-controller qcom,krait-cc-v2
/cpu-pmu qcom,krait-pmu
/soc/clock-controller@fc400000 qcom,gcc-msm8974
/soc/clock-controller@fd8c0000 qcom,mmcc-msm8974
/soc/i2c@f9967000 qcom,i2c-qup-v2.1.1
/soc/pinctrl@fd510000 qcom,msm8974-pinctrl
/soc/restart@fc4ab000 qcom,pshold
/soc/rng@f9bff000 qcom,prng
/soc/sdhci@f9824900 qcom,sdhci-msm-v4
/soc/serial@f991e000 qcom,msm-uartdm-v1.4qcom,msm-uartdm
/soc/spmi@fc4cf000 qcom,spmi-pmic-arb
/soc/spmi@fc4cf000/pm8841@4 qcom,spmi-pmic
/soc/spmi@fc4cf000/pm8841@5 qcom,spmi-pmic
/soc/spmi@fc4cf000/pm8941@0 qcom,spmi-pmic
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell
/soc/spmi@fc4cf000/pm8941@1 qcom,spmi-pmic

dt_stat - example --nd skip
$ dt_stat --nd
/clock-controller qcom,krait-cc-v2 /sys/devices/platform/clock-controller clock-krait
/cpu-pmu qcom,krait-pmu /sys/devices/platform/cpu-pmu arm-pmu
/soc/clock-controller@fc400000 qcom,gcc-msm8974 /sys/devices/platform/soc/fc400000.clock-controller gcc-msm8974
/soc/clock-controller@fd8c0000 qcom,mmcc-msm8974 /sys/devices/platform/soc/fd8c0000.clock-controller mmcc-msm8974
/soc/i2c@f9967000 qcom,i2c-qup-v2.1.1 /sys/devices/platform/soc/f9967000.i2c i2c_qup
/soc/pinctrl@fd510000 qcom,msm8974-pinctrl /sys/devices/platform/soc/fd510000.pinctrl msm8x74-pinctrl
/soc/restart@fc4ab000 qcom,pshold /sys/devices/platform/soc/fc4ab000.restart msm-restart
/soc/rng@f9bff000 qcom,prng /sys/devices/platform/soc/f9bff000.rng msm_rng
/soc/sdhci@f9824900 qcom,sdhci-msm-v4 /sys/devices/platform/soc/f9824900.sdhci sdhci_msm
/soc/serial@f991e000 qcom,msm-uartdm-v1.4qcom,msm-uartdm /sys/devices/platform/soc/f991e000.serial msm_serial
/soc/spmi@fc4cf000 qcom,spmi-pmic-arb /sys/devices/platform/soc/fc4cf000.spmi spmi_pmic_arb
/soc/spmi@fc4cf000/pm8841@4 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-04 pmic-spmi
/soc/spmi@fc4cf000/pm8841@5 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-05 pmic-spmi
/soc/spmi@fc4cf000/pm8941@0 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00 pmic-spmi
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00
/fc4cf000.spmi:pm8941@0:qcom,coincell@2800 qcom,pm8941-coincell
/soc/spmi@fc4cf000/pm8941@1 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-01 pmic-spmi
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/alarmtimer alarmtimer
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/reg-dummy reg-dummy
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/snd-soc-dummy snd-soc-dummy
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/soc/f9824900.sdhci/mmc_host/mmc0/mmc0:0001 mmcblk

dt_stat - example --nd skip
$ dt_stat --nd
/clock-controller qcom,krait-cc-v2 /sys/devices/platform/clock-controller clock-krait
/cpu-pmu qcom,krait-pmu /sys/devices/platform/cpu-pmu arm-pmu
/soc/clock-controller@fc400000 qcom,gcc-msm8974 /sys/devices/platform/soc/fc400000.clock-controller gcc-msm8974
/soc/clock-controller@fd8c0000 qcom,mmcc-msm8974 /sys/devices/platform/soc/fd8c0000.clock-controller mmcc-msm8974
/soc/i2c@f9967000 qcom,i2c-qup-v2.1.1 /sys/devices/platform/soc/f9967000.i2c i2c_qup
/soc/pinctrl@fd510000 qcom,msm8974-pinctrl /sys/devices/platform/soc/fd510000.pinctrl msm8x74-pinctrl
/soc/restart@fc4ab000 qcom,pshold /sys/devices/platform/soc/fc4ab000.restart msm-restart
/soc/rng@f9bff000 qcom,prng /sys/devices/platform/soc/f9bff000.rng msm_rng
/soc/sdhci@f9824900 qcom,sdhci-msm-v4 /sys/devices/platform/soc/f9824900.sdhci sdhci_msm
/soc/serial@f991e000 qcom,msm-uartdm-v1.4qcom,msm-uartdm /sys/devices/platform/soc/f991e000.serial msm_serial
/soc/spmi@fc4cf000 qcom,spmi-pmic-arb /sys/devices/platform/soc/fc4cf000.spmi spmi_pmic_arb
/soc/spmi@fc4cf000/pm8841@4 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-04 pmic-spmi
/soc/spmi@fc4cf000/pm8841@5 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-05 pmic-spmi
/soc/spmi@fc4cf000/pm8941@0 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00 pmic-spmi
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00
/fc4cf000.spmi:pm8941@0:qcom,coincell@2800 qcom,pm8941-coincell
/soc/spmi@fc4cf000/pm8941@1 qcom,spmi-pmic /sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-01 pmic-spmi
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/alarmtimer alarmtimer
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/reg-dummy reg-dummy
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/snd-soc-dummy snd-soc-dummy
qcom,apq8074-dragonboardqcom,apq8074 /sys/devices/platform/soc/f9824900.sdhci/mmc_host/mmc0/mmc0:0001 mmcblk

dt_stat - example --nxb skip
$ dt_stat --nxb
/cpus/cpu@0 qcom,krait
/cpus/cpu@1 qcom,krait
/cpus/cpu@2 qcom,krait
/cpus/cpu@3 qcom,krait
/cpus/idle-states/spc qcom,idle-state-spcarm,idle-state
/cpus/l2-cache cache
/cpus/spmi@fc4cf000 qcom,spmi-pmic-arb
/cpus/spmi@fc4cf000/pm8841@4 qcom,pm8841
/cpus/spmi@fc4cf000/pm8841@5 qcom,pm8841
/cpus/spmi@fc4cf000/pm8941@0 qcom,pm8941
/cpus/spmi@fc4cf000/pm8941@1 qcom,pm8941
/soc simple-bus
/soc/clock-controller@f9016000 qcom,hfpll
/soc/clock-controller@f9088000 qcom,kpss-acc-v2
/soc/clock-controller@f908a000 qcom,hfpll
/soc/clock-controller@f9098000 qcom,kpss-acc-v2

dt_stat - example --nxd skip
$ dt_stat --nxd
/cpus/idle-states/spc qcom,idle-state-spcarm,idle-state
/cpus/l2-cache cache
/cpus/spmi@fc4cf000 qcom,spmi-pmic-arb
/cpus/spmi@fc4cf000/pm8841@4 qcom,pm8841
/cpus/spmi@fc4cf000/pm8841@5 qcom,pm8841
/cpus/spmi@fc4cf000/pm8941@0 qcom,pm8941
/cpus/spmi@fc4cf000/pm8941@1 qcom,pm8941
/soc/sdhci@f98a4900 qcom,sdhci-msm-v4

Debugging Boot Problems
As promised many slides ago (before getting
sidetracked with dt_node_info and dt_stat):

I will provide
 - some examples of failures at various stages
 - tools and techniques to investigate

Lather, Rinse, Repeat
 example build / boot / test cycle

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

For my example target system, the .dtb is
placed in the boot image

Problem - device not created
$ dt_node_info coincell
===== devices

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell

===== nodes bound to a driver

===== nodes with a device

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell

===== nodes without a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,pm8941-coincell

Look at Expanded DT

Are there any errors in the source .dts?

1) copy /proc/device-tree from target
 system to base/ on host system

2) decompile base/

 $ dtdiff base

Look at Expanded DT
pm8941@0 {
 #address-cells = <0x1>;
 #size-cells = <0x0>;
 compatible = "qcom,spmi-pmic";
 reg = <0x0 0x0>;

 qcom,coincell@2800 {
 compatible = "qcom,pm8941-coincell";
 qcom,charge-enable;
 qcom,rset-ohms = <0x834>;
 qcom,vset-millivolts = <0xbb8>;
 reg = <0x2800>;
 status = "disabled";
 stratus = "ok";
 };
};

Look at Expanded DT
qcom,coincell@2800 {
 compatible = "qcom,pm8941-coincell";
 qcom,charge-enable;
 qcom,rset-ohms = <0x834>;
 qcom,vset-millivolts = <0xbb8>;
 reg = <0x2800>;
 status = "disabled";
 stratus = "ok";
};

Problem - device not created
FIX and try again

Fix typo in .dts

Find location of typo
Look in:
 ${KBUILD_OUTPUT}/
 .qcom-apq8074-dragonboard.dtb.annotate.dts.tmp

dts="arch/arm/boot/dts/"

 . . .

pm8941_coincell: qcom,coincell@2800 { /* $dts/qcom-apq8074-dragonboard.dts:70 */
 compatible = "qcom,pm8941-coincell"; /* $dts/qcom-pm8941.dtsi:14 */
 reg = <0x2800>; /* $dts/qcom-pm8941.dtsi:15 */
 status = "disabled"; /* $dts/qcom-pm8941.dtsi:16 */
 stratus = "ok"; /* $dts/qcom-apq8074-dragonboard.dts:71 */
 qcom,rset-ohms = <0x834>; /* $dts/qcom-apq8074-dragonboard.dts:72 */
 qcom,vset-millivolts = <0xbb8>; /* $dts/qcom-apq8074-dragonboard.dts:73 */
 qcom,charge-enable; /* $dts/qcom-apq8074-dragonboard.dts:74 */
}; /* $dts/qcom-apq8074-dragonboard.dts:75 */

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

Fixed - device not created
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes bound to a driver

===== nodes with a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes without a device

Chapter 3.2
Debugging Boot Problems

What can go wrong while trying to:

 - create devices

 - register drivers

 - bind drivers to devices

initcall - // driver binding skip
platform_driver_register()
 driver_register()
 while (dev = iterate over devices on the platform_bus)
 if (!driver_match_device()) return 0
 if (dev->driver) return 0
 driver_probe_device()
 really_probe(dev, drv)
 ret = pinctrl_bind_pins(dev)
 if (ret)
 goto probe_failed
 if (dev->bus->probe)
 ret = dev->bus->probe(dev)
 if (ret) goto probe_failed
 else if (drv->probe)
 ret = drv->probe(dev)
 if (ret) goto probe_failed
 driver_bound(dev)
 driver_deferred_probe_trigger()
 if (dev->bus)
 blocking_notifier_call_chain()

initcall - // driver binding skip
Reformatting the previous slide to make it
more readable (see next slide)

initcall - // driver binding skip
platform_driver_register()
 while (dev = iterate over devices on platform_bus)
 if (!driver_match_device()) return 0
 if (dev->driver) return 0
 driver_probe_device()
 really_probe(dev, drv)
 ret = pinctrl_bind_pins(dev)
 if (ret)
 goto probe_failed
 if (dev->bus->probe)
 ret = dev->bus->probe(dev)
 if (ret) goto probe_failed
 else if (drv->probe)
 ret = drv->probe(dev)
 if (ret) goto probe_failed
 driver_bound(dev)
 driver_deferred_probe_trigger()
 if (...) blocking_notifier_call_chain()

Problem - driver not bound skip
Many possible problems may result in driver
not binding to the device.

 Will debug several problems...

Problem - driver not bound (1)
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes bound to a driver

===== nodes with a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes without a device

Problem - driver not bound (1) skip
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

 Output from dt_node_info truncated on the right.

 Most slides showing dt_node_info output will be
 truncated in this manner.

Problem - driver not bound (1)
Was the driver configured into the kernel?

Device tree node in the .dts file:

 pm8941_coincell: qcom,coincell@2800 {
 compatible = "qcom,pm8941-coincell";
 reg = <0x2800>;
 status = "disabled";
 };

Search for compatible = "qcom,pm8941-coincell"
in the kernel source

Problem - driver not bound (1)
Search for compatible = "qcom,pm8941-coincell"
in the kernel source

$ git grep "qcom,pm8941-coincell"
arch/arm/boot/dts/qcom-pm8941.dtsi: compatible = "qcom,pm894
drivers/misc/qcom-coincell.c: { .compatible = "qcom,pm8941-coincell", },
drivers/misc/qcom-coincell.c: .name = "qcom,pm8941-coincell"
(END)

driver is drivers/misc/qcom-coincell.c

Search drivers/misc/Makefile for the
config option to compile the driver

Problem - driver not bound (1)
Search for the config option to
compile the driver.

$ grep qcom-coincell drivers/misc/Makefile
obj-$(CONFIG_QCOM_COINCELL) += qcom-coincell.o

Problem - driver not bound (1)
Search for the config option to
compile the driver. Is it enabled?

$ grep qcom-coincell drivers/misc/Makefile
obj-$(CONFIG_QCOM_COINCELL) += qcom-coincell.o

$ grep CONFIG_QCOM_COINCELL ${KBUILD_OUTPUT}/.config
CONFIG_QCOM_COINCELL is not set

Problem - driver not bound (1)
FIX and try again

Enable config option for the driver

$ grep CONFIG_QCOM_COINCELL ${KBUILD_OUTPUT}/.config
CONFIG_QCOM_COINCELL=y

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

Sidetrack
Q. Why is there no tool to generate a list of
 config options required by a device tree?

A. There have been attempts...
 It is not trivial to totally automate.

Sidetrack
Proof of concept tool

$ dt_to_config \
 arch/arm/boot/dts/qcom-apq8074-dragonboard.dts \
 > dragon_config_info
$ grep -i coin dragon_config_info
node qcom,coincell@2800 : ok : compatible qcom,pm8941-coincell : driver drivers/misc/qcom-coincell.c : CONFIG_QCOM_COINCELL
node qcom,coincell@2800 : error : compatible pm8941-coincell : driver not found : no config

node qcom,coincell@2800
 : ok
 : compatible qcom,pm8941-coincell
 : driver drivers/misc/qcom-coincell.c
 : CONFIG_QCOM_COINCELL

Sidetrack skip
Proof of concept tool

$ dt_to_config \
 arch/arm/boot/dts/qcom-apq8074-dragonboard.dts \
 | cut -d":" \
 | grep -i coin dragon_config

CONFIG_QCOM_COINCELL

Sidetrack skip
Proof of concept tool

$ dt_to_config -a ${KBUILD_OUTPUT}/.config \
 arch/arm/boot/dts/qcom-apq8074-dragonboard.dts \
 | cut -d":" -f5

CONFIG_QCOM_COINCELL

Problem - driver not bound (2)
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes bound to a driver

===== nodes with a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes without a device

Problem - driver not bound (2)
Was the driver registered at boot?

----- Target system -----

Kernel command line: debug
 dyndbg="func bus_add_driver +p"

Assumptions skip
Kernel command line:
 dyndbg="func bus_add_driver +p"

'dyndbg' requires CONFIG_DYNAMIC_DEBUG=y

'debug' may be used to set the loglevel so debug
messages appear on the console

CONFIG_MESSAGE_LOGLEVEL_DEFAULT may
also be used to set the loglevel

The dmesg command can be used to print the
debug messages.

Lather, Rinse, Repeat

 configure kernel*
 build kernel*
 build .dtb
 create boot image*
 install boot image
 boot kernel

*if kernel command line built into kernel

Problem - driver not bound (2)
Was the driver registered at boot?

----- Target system -----

$ dmesg | grep coin
$ dmesg | grep "add driver"
bus: 'platform': add driver CCI-400 PMU
bus: 'platform': add driver CCI-400
...

Problem - driver not bound (2)
Was the driver registered at boot?

----- Host system -----

$ grep qcom_coincell System.map
$

Look for driver registration in source code

Problem - driver not bound (2)
Was the driver registered at boot?

Cause: no driver registration in source code

Problem - driver not bound (2) skip
FIX and try again

Add driver registration in source code
static const struct of_device_id qcom_coincell_match_table[] = {
 { .compatible = "qcom,pm8941-coincell", },
 {}
};

MODULE_DEVICE_TABLE(of, qcom_coincell_match_table);

static struct platform_driver qcom_coincell_driver = {
 .driver = {
 .name = "qcom,pm8941-coincell",
 .of_match_table = qcom_coincell_match_table,
 },
 .probe = qcom_coincell_probe,
};

module_platform_driver(qcom_coincell_driver);

Problem - driver not bound (2) skip
Partial list of subsystem #defines to register driver:

module_acpi_driver() module_pci_driver()
module_amba_driver() module_pcmcia_driver()
module_comedi_pci_driver() module_phy_driver()
module_comedi_pcmcia_driver() module_platform_driver()
module_comedi_usb_driver() module_pnp_driver()
module_fsl_mc_driver() module_qcom_smd_driver()
module_gameport_driver() module_serio_driver()
module_hda_codec_driver() module_snd_seq_driver()
module_hid_driver() module_spi_driver()
module_i2c_driver() module_spmi_driver()
module_mcb_driver() module_usb_driver()
module_mipi_dsi_driver() module_usb_serial_driver()
module_mips_cdmm_driver() module_virtio_driver()

Problem - driver not bound (2) skip
Some drivers are registered with a direct call
to driver_register().

Problem - driver not bound (2)
FIX and try again

Add driver registration in source code

module_platform_driver(qcom_coincell_driver);

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

Problem - driver not bound (2)
Verify that the probe function is in the kernel:

$ grep qcom_coincell System.map
c054f880 t qcom_coincell_probe
c078ea28 r qcom_coincell_match_table
c09cec8c t qcom_coincell_driver_init
c09e5d64 t qcom_coincell_driver_exit
c09f2f18 t __initcall_qcom_coincell_driver_init6
c0a4153c d qcom_coincell_driver

Problem - driver not bound (3)
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes bound to a driver

===== nodes with a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes not bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes without a device

Problem - driver not bound (3)
Was the driver probe successful at boot?

Kernel command line:
 dyndbg="func bus_add_driver +p"
 dyndbg=”func really_probe +p”

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image*
 install boot image
 boot kernel

*if kernel command line baked into boot image

Problem - driver not bound (3)
Was the driver probe successful at boot?

----- Target system -----

$ dmesg | grep coin
bus: 'platform': add driver qcom,pm8941-coincell
bus: 'platform': really_probe: probing driver qcom,pm8941-coincell
 with device fc4cf000.spmi:pm8941@0:qcom,coincell@2800
qcom,pm8941-coincell: probe of fc4cf000.spmi:pm8941@0:qcom,
 coincell@2800 failed with error -22

Problem - driver not bound (3)
qcom,pm8941-coincell: probe of …
 failed with error -22

include/uapi/asm-generic/errno-base.h:

 #define EINVAL 22 /* Invalid argument */

$ grep EINVAL drivers/misc/qcom-coincell.c
 return -EINVAL;
 return -EINVAL;
 return -EINVAL;

Problem - driver not bound (3)
$ grep EINVAL drivers/misc/qcom-coincell.c
 return -EINVAL;
 return -EINVAL;
 return -EINVAL;

Debug strategy (1):
 Add printk() for each EINVAL return.

Problem - driver not bound (3) skip
Debug strategy (1):
 Add printk() for each EINVAL return.

There are some alternatives to printk(), eg:
 - read the C source, follow all possible paths
 returning error values, examine the decompiled
 EDT to see if missing or existing properties
 would trigger the error
 - trace_printk()
 - kernel debugger breakpoint
 - kernel debugger tracepoint

To keep the slides concise, I will only use printk().

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

Problem - driver not bound (3)
Debug strategy (1):
 Add printk() for each EINVAL return.

Result:
 None of the printk() occur.

Problem - driver not bound (3)
qcom_coincell_probe() calls several other functions
which may return errors. The common pattern is:

 rc = xxx();
 if (rc)
 return rc;

Debug strategy (2):
 Add printk() for each rc return.

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

Problem - driver not bound (3)
Debug strategy (2):
 Add printk() for each rc return.

Result:
 The error is returned from:

 rc = of_property_read_u32(node,
 "qcom,rset-ohms",
 &rset);

EINVAL is many call levels deep
This type of error is hard to find by reading source

of_property_read_u32()
 of_property_read_u32_array()
 val = of_find_property_value_of_size()
 *prop = of_find_property()
 if (!prop):
 return ERR_PTR(-EINVAL)
 if (IS_ERR(val))
 return PTR_ERR(val)

Problem - driver not bound (3)
NOT A FIX - show how to improve the
error message before fixing

Add precise error message to driver:

rc = of_property_read_u32(node,
 "qcom,rset-ohms", &rset);
if (rc) {
 dev_err(chgr->dev,
 "can't find 'qcom,rset-ohms' in DT block");
 return rc;
};

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

Problem - driver not bound (4)
Showing the real error message!

$ dmesg | grep coin
...
qcom,pm8941-coincell
 fc4cf000.spmi:pm8941@0:qcom,coincell@2800:
 can't find 'qcom,rset-ohms' in DT block
qcom,pm8941-coincell:
 probe of fc4cf000.spmi:pm8941@0:qcom,coincell@2800
 failed with error -22

Problem - driver not bound (4)
 can't find 'qcom,rset-ohms' in DT block

 failed with error -22

The detailed message provides enough
information to easily troubleshoot the problem.

FULL DISCLOSURE skip
The dev_err() error report is present in the
real driver.

 For the example, I removed the dev_err() to
 show how important it is to clearly report errors
 that result in the probe failing.

Problem - driver not bound (4)
FIX and try again

Add property 'qcom,rset-ohms' to
the pm8941_coincell device tree node.

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

FIXED - driver bound to device
$ dt_node_info coincell
===== devices
/sys/devices/platform/soc/fc4cf000.spmi/spmi-0/0-00/

===== nodes
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes bound to a driver
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes with a device
/soc/spmi@fc4cf000/pm8941@0/qcom,coincell@2800 qcom,

===== nodes not bound to a driver

===== nodes without a device

Lather, Rinse, Repeat

 configure kernel
 build kernel
 build .dtb
 create boot image
 install boot image
 boot kernel

occurred 9 times in the “Debugging Boot
Problems” examples

Lather, Rinse, Repeat skip

 configure kernel
 build kernel
 build .dtb
 create boot image*
 install boot image
 boot kernel

*On some systems, create boot image for a
 new .dtc is replaced by:

 copy .dtc to bootloader

Lather, Rinse, Repeat

The tools and methods I showed are reactive.

The debug process might be improved
by static analysis tools.

 Currently being discussed and developed.

More useful data: driver skip
What bus was the driver registered for?

----- Target system -----

Kernel command line:
 dyndbg="func bus_add_driver +p"

$ dmesg | grep "add driver"
bus: 'XXX': add driver ZZZ

 Examples of bus type on next slide

More useful data: driver skip
$ dmesg | grep "add driver"
bus: 'platform': add driver gcc-msm8974
bus: 'i2c': add driver dummy
bus: 'mdio_bus': add driver Generic PHY
bus: 'usb': add driver hub
bus: 'qcom_smd': add driver wcnss_ctrl
bus: 'spmi': add driver pmic-spmi
bus: 'scsi': add driver sd
bus: 'spi': add driver m25p80
bus: 'mmc': add driver mmcblk
bus: 'amba': add driver mmci-pl18x
bus: 'hid': add driver hid-generic

More useful data: driver skip
Deferred probe issues

----- Target system -----

Kernel command line:
 dyndbg="func deferred_probe_work_func +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_del +p"

Typical driver binding patterns skip
Make these substitutions on the following slides

 BUS --- the bus name

 DEV --- the device name

 DVR --- the driver name

Device Creation ---> probe skip
 create child: NODE
device: 'DEV': device_add
bus: 'BUS': driver_probe_device: matched device DEV with driver DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

driver: 'DVR': driver_bound: bound to device 'DEV'
bus: 'BUS': really_probe: bound device DEV to driver DVR

Driver Register ---> probe skip
bus: 'BUS': add driver DVR
bus: 'BUS': driver_probe_device: matched device DEV with driver DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

driver: 'DVR': driver_bound: bound to device 'DEV'
bus: 'BUS': really_probe: bound device DEV to driver DVR

Deferred Probe ---> re-probe skip
bus: 'BUS': add driver DVR
device: 'DEV': device_add
bus: 'BUS': driver_probe_device: matched device DEV with DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

BUS DEV: Driver DVR requests probe deferral
BUS DEV: Added to deferred list
BUS DEV: Retrying from deferred list
bus: 'BUS': driver_probe_device: matched DEV with driver DVR
bus: 'BUS': really_probe: probing driver DVR with device DEV

 ===== messages from driver probe function =====

driver: 'DVR': driver_bound: bound to device 'DEV'
bus: 'BUS': really_probe: bound device DEV to driver DVR

Useful data: device and driver skip
Summary:

 dyndbg="func of_platform_bus_create +p"
 dyndbg="func bus_add_driver +p"
 dyndbg="func device_add +p"
 dyndbg="func driver_probe_device +p"
 dyndbg="func really_probe +p"
 dyndbg="func driver_bound +p"
 dyndbg="func deferred_probe_work_func +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_add +p"
 dyndbg="func driver_deferred_probe_del +p"

Takeaway
/proc/device-tree and /sys/devices provide visibility
into the state and data of
 - Device Tree
 - Devices
 - Drivers

Takeaway
/proc/device-tree and /sys/devices provide visibility
into the state and data of
 - Device Tree
 - Devices
 - Drivers

dt_stat combines this information to provide
 several reports

dt_node_info packages the information from
 dt_stat in an easy to scan summary

Takeaway
kernel command line dyndbg options can
provide a lot of information about what is
causing device creation and driver binding
errors.

Takeaway
Driver authors: if enough information is provided
in error messages then DT source errors should
be solvable without reading the driver source.

Review
Comparing device trees through the life cycle
 - (skipped if short on time)
 - transformations during build, boot loader,
 kernel boot, run-time
 - dtdiff (patches required)

Kernel boot: device creation, driver binding
 - dyndbg
 - dt_stat
 - dtdiff

Review - Why this talk?
At the end of this talk, you will know how to:

 - debug some common device tree problems

 - access data to support the debug process

 Debugging some types of device tree
 problems will be easier.

 THE END

Thank you for your attention...

 Questions?

Resources
Resources for "Solving Device Tree Issues" talk,
Embedded Linux Conference Europe - October 6, 2015

 http://elinux.org/Device_Tree_frowand
 More detailed information on how to perform the tasks in this talk

Device Tree For Dummies, Thomas Pettazzoni, ELC 2014

 http://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf

devicetree: Kernel Internals and Practical Troubleshooting
Frank Rowand, ELCE 2014

 http://elinux.org/ELC_Europe_2014_Presentations

 How to get a copy of the slides

1) leave a business card with me

2) frank.rowand@sonymobile.com

3) http://elinux.org/Device_Tree

4) http://events.linuxfoundation.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202

