

TF-A Project

Foundational Features

What is Trusted Firmware-A?

- Reference implementation of secure world software (EL3) for Armv7-A and Armv8-A
 - For all Arm Cortex-A & Neoverse processors
 - Across all market segments
- Foundation to build a Trusted Execution Environment (TEE)
- Designed for reuse or porting to other platforms EL1
- 30+ platform ports supported upstream
- 16+ different vendors
- Open source project since October 2013
- BSD-3-Clause license
- Contributions accepted under the term of Developer Certificate of Origin
- Open governance model on trustedfirmware.org
- 6-monthly releases

What is Trusted Firmware-A?

- Reference implementation of secure world software (EL3) for Armv7-A and Armv8-A
 - For all Arm Cortex-A & Neoverse processors
 - Across all market segments
- Foundation to build a Trusted Execution Environment (TEE)
- Designed for reuse or porting to other platforms EL1
- 30+ platform ports supported upstream
- 16+ different vendors
- Open source project since October 2013
- BSD-3-Clause license
- Contributions accepted under the term of Developer Certificate of Origin
- Open governance model on trustedfirmware.org
- 6-monthly releases

What is Trusted Firmware-A?

- Reference implementation of secure world software (EL3) for Armv7-A and Armv8-A
 - For all Arm Cortex-A & Neoverse processors
 - Across all market segments
- Foundation to build a Trusted Execution Environment (TEE)
- Designed for reuse or porting to other platforms EL1
- 30+ platform ports supported upstream
- 16+ different vendors
- Open source project since October 2013
- BSD-3-Clause license
- Contributions accepted under the term of Developer Certificate of Origin
- Open governance model on trustedfirmware.org
- 6-monthly releases

Boot Flow

Several firmware stages

- BL1 and BL2 are transient images
 - Discarded after the boot
- Not used by all platforms
 - Proprietary/custom firmware
 - Existing firmware pre-dating TF-A
- BL31 is runtime resident
- Provide runtime services...
 - Power management, Arm architectural services, SoC services, board services
- ...to lower exception levels
 - Rich OS
 - Trusted OS (OP-TEE, Android Trusty TEE, NVIDIA TLK,...)

Trusted Boot

Ensuring the integrity of the firmware

- TBFU (Trusted Boot Firmware Update) Compliant
- Based on a hardware root of trust
 - Immutable root-of-trust public key
 - Immutable secure boot ROM firmware
- Each firmware stage verifies the signature of the next one
 - From ROM firmware (BL1) up to normal world bootloader (BL33)
- Refuse to boot on authentication error
- Optional integration with cryptographic hardware (e.g. Arm CryptoCell-712/713)
- On-going work for multiple signing domains
 - Multiple root-of-trust keys for independent software providers
- Optional firmware encryption for confidentiality/anticloning (e.g. DRM use cases)

Power Management

- Power State Coordination Interface (PSCI) library
- Arbitrate power management requests from Non Secure world with the Secure world notified of these requests

Power Management

- Power State Coordination Interface (PSCI) library
- Arbitrate power management requests from Non Secure world with the Secure world notified of these requests
- System Control and Management Interface (SCMI) driver
 - Standardized interface for power, performance and resource management on a SoC
 - Requires a conforming power controller
 - Arm System Control Processors (SCP)
 - Allows to delegate power management to SCP
 - Enables a platform-agnostic AP firmware

Exception Handling

- Software Delegated Exception Interface (SDEI)
 - Deliver extraordinary System events
 - SDEI Dispatcher implemented in BL31
 - OS or hypervisor register system event callback
 - When triggered be serviced **immediately** by an OS or hypervisor
- Up to 2 priority levels of SDEI events
 - Normal priority
 - Critical priority
- Events can be software or hardware generated
 - Hardware: Interrupts, exceptions
 - Software: Software Generated Interrupts/Events
- Current implemented use case support
 - Platform error handling (RAS)

Armv8 Architecture Enablement

https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-a/tf-a-architectural-features

FEATURE	TF-A VERSION	ADDITIONAL INFORMATION
Armv8.1-LSE	v1.4 Spinlock	CAS only
Armv8.2-TTCNP	v2.1	Translation table library update
Armv8.2-RAS	v1.5	SDEI, EHF and SPM components
Armv8.2-SPE	v1.4 Lower ELs (Normal world)	Statistical Profiling Extension
Armv8.2-SVE	v1.5 Lower ELs (Normal world)	Scalable Vector Extension
Armv8.3-Pauth	v2.1 Lower ELs (Normal world) v2.2 EL3 and Secure world ELs	
Armv8.4-DIT	v2.1	
Armv8.4-RAS	v1.6	

FEATURE	TF-A VERSION	ADDITIONAL INFORMATION
Armv8.4-TTST	v2.1	
Armv8.4-MPAM	v1.6 Lower ELs (Normal world)	Normal world only
Armv8.4-AMU	v1.5	Enabled for Cortex-A75 and Neoverse-N1, plus all newest Armv8.4 cores
Armv8.4-SecEL2		Ongoing work
Armv8.5-PMU	v2.1	
Armv8.5-SSBS	v2.1	Cortex-A76 and Neoverse-N1
Armv8.5-BTI	v2.2	
Armv8.5-MTE	v2.2 Lower ELs (Normal world)	

arm

Generic Firmware

Latest features

Generic Firmware

- Today: Firmware binaries are tied to a platform
 - Lots of platform header files
 - Built-in platform information (memory map, interrupts, ...)
- Goal: A single firmware stack runs across a range of platforms
 - Much like the Linux kernel today
 - By moving all differentiating configuration options to a configuration file
 - Configuration file parsed at boot time for self-configuration
- Not for all market segments (e.g. highly constrained devices)
 - Performance overhead
 - Memory footprint increase
 - More complexity
- Could use config files even for static platform data
 - Tool to convert config files to static platform data *
 - Benefit: Centralize platform data

(*) Not implemented yet.

#define ARM_CONSOLE_BAUDRATE 115200

file

Configuration Information

- Using DTB format for the config files (libfdt)
 - Might support alternate formats in the future
- Traditional hardware configuration
 - CPU topology
 - Console base address, baudrate, ...
 - Secure watchdog
- Secure firmware features
 - Enable/disable Trusted Boot
 - Configure log level
 - Load address/size of images to load/authenticate
- Modification of configuration as seen by other software
 - Probed runtime memory
 - Secure memory reservation
 - Kernel boot arguments

```
irmware ·
 sdei {
     compatible = "arm,sdei-1.0";
     method = "smc";
     private_event_count = <1>;
     shared_event_count = <2>;
     private events = <1000 SDEI DYN IRQ SDEI MAPF DYNAMIC>;
     shared_events = <2000 SDEI_DYN_IRQ SDEI_MAPF_DYNAMIC>,
                      <2001 SDEI_DYN_IRQ SDEI_MAPF_DYNAMIC>;
 sec interrupts {
     compatible = "arm,secure interrupt desc";
     g0 intr cnt = <2>;
     g1s_intr_cnt = <1>;
     g0 intr desc = < 8 SDEI NORMAL EDGE>,
                    <14 HIGHEST SEC EDGE>;
     g1s intr_desc = < 9 HIGHEST_SEC EDGE>;
```

- Configuration of a specific firmware component
 - DDR training parameters
 - TrustZone Controller security policies

Firmware Configuration Framework (FCONF)

A data abstraction layer to access the configuration data

- 1. Module registers a callback which extracts configuration data
 - Example: Parse hardware DT to extract platform topology info:

FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);

- All callbacks gathered in a .fconf populator linker section
- 2. Configuration data is parsed at boot time
 - Every registered callback is called
 - Extracted information is retained in global data

```
cpus {
    /* CPU topology */
};
arm-io-policies {
    /* I/O policies */
};

struct hw_topology {
    uint32_t plat_cluster_count;
    ...

struct plat_io_policies {
    uintptr_t *dev_handle;
    ...
```

3. Module queries global configuration data

FCONF_GET_PROPERTY(hw_config, topology, plat_cluster_count)

FCONF without a Configuration File

A data abstraction layer to access the configuration data

- 1. Module registers a callback which extracts configuration data
 - Example: Parse hardware DT to extra platform topology info:

FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology)

- · All callbacks gathered in a .fconf populator linker section
- 2. Configuration data is parsed at boot time
 - Every registered callback is called ——Click to add tex
 - Extracted information is retained in global data

```
cpus {
   /* CPU topology */
};
arm-io-policies {
   /* I/O policies */
};
fconf_populate_topo
fconf_populate_io_po
```

3. Module queries global configuration data

FCONF_GET_PROPERTY(hw_config, topology, plat_cluster_count)

Provided by platform layer

```
struct hw_topology {
    uint32_t plat_cluster_count;
    ...

struct plat_io_policies {
    uintptr_t *dev_handle;
    ...
```

Does not change, whether config data comes from config file or platform data

arm

Rearchitecturing the Secure World Software

Latest features

Secure World Software Architecture Today

Without a Trusted OS

- EL3 firmware provides lots of services
- Increases code complexity
- Increases attack surface
- Increases fragmentation (platform custom services)

Application trusted OS specific

Application provider specific

Generic software

TrustedFirmware.org

Silicon Vendor specific software

Secure services:

- DRM
- Secure payment
- Secure storage
- Crypto

Platform services:

- Trusted boot
- Power management (PSCI)
- Silicon vendor services
- Errata management

Secure World Software Architecture Today

With a Trusted OS

- Secure services are provided by the Trusted OS
- Platforms services are still in EL3 firmware
- No hardware isolation between S-EL1 and EL3
- Requires some TOS specific components across the software stack

TrustedFirmware

Application trusted OS specific

Application provider specific

Secure World Software Architecture Goal

- TrustedFirmware .org
 - Application trusted OS specific
 - Application provider specific
 - Generic software
 - TrustedFirmware.org
 - Silicon Vendor specific software

- Move services upper the exception levels (S-ELO)
- Keep the EL3 firmware minimal
- Reduces firmware attack surface
- Reduces firmware complexity
- Ease auditing and certification
- Allows to have a generic firmware (free of platform specific services)

TrustedFirmware .org

Application trusted OS specific

Application provider specific

Generic software

Leveraging Armv8.4 Secure Virtualization

- Isolation through virtualization in the Secure world
- Standardization of interfaces between Normal and Secure world through Arm PSA FF-A compliance
- Generic Secure Firmware spanning EL3 & S-EL2
- Support for multiple Trusted OSes (isolated from each other)

Secure World Architecture Building Blocks

- Platform Security Architecture,
 Firmware Framework for A-class processors (PSA FF-A)
 - Standard set of interfaces between SPs/SPM
 - Between SPs and Normal world

- Secure Partitions (SP)
 - Mutually distrustful software sandboxes running in the Secure world
 - Isolated execution context and address space
 - Limited access to system resources
 - Secure Partition Manager (SPM)
 - Responsible for:
 - Initializing secure partitions at boot time
 - Enabling communication between service requestors and providers
 - Managing runtime requests
 - Enforces principle of least privilege
 - Initial PSA FF-A compliant SPM Dispatcher
 - Hafnium as the reference Secure EL2 SPM of choice
 - Migrated by Google into TrustedFirmware.org

Useful Project Links

- TF-A mailing list for technical discussions
- TF-A open Tech Forum bi-weekly call
- <u>CGit</u> to browse the source code
- Gerrit server for open reviews
- <u>Documentation</u>
- TF-A Tests suite
- Trustedfirmware.org monthly project status updates
- Trustedfirmware.org board meeting minutes

arm

† † † † Thảnk You Danke

> Merci 谢谢

ありがとう

Gracias

Kiitos

감사합니다

धन्यवाद

شکرًا

ধন্যবাদ

תודה

© 2020 Arm Limited (or its affiliates)

arm

⁺The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks