References and Presentation at: http://www.elinux.org/ALS-i2c
Introduction

- Dave Anders aka prpplague
Introduction

- Dave Anders aka prpplague
- Currently Contracted with TI
Introduction

- Dave Anders aka prpplague
- Currently Contracted with TI
- Partners in TinCanTools
Introduction

- Dave Anders aka prpplague
- Currently Contracted with TI
- Partners in TinCanTools
- Board Bring: You, Me, and I2C
Introduction

- Dave Anders aka prpplague
- Currently Contracted with TI
- Partners in TinCanTools
- Board Bring: You, Me, and I2C
 - Communication Principles
Introduction

- Dave Anders aka prpplague
- Currently Contracted with TI
- Partners in TinCanTools
- Board Bring: You, Me, and I2C
 - Communication Principles
 - Drivers and Software Tools
Introduction

- Dave Anders aka prpplague
- Currently Contracted with TI
- Partners in TinCanTools
- Board Bring: You, Me, and I2C
 - Communication Principles
 - Drivers and Software Tools
 - Board Bringup Use Cases
Communication Principles

- Asynchronous Communication
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
 - Morse Code / Telegraph
Communication Principles
Communication Principles
Communication Principles
Communication Principles

DOT
Communication Principles

DOT
Communication Principles

DOT
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
 - Morse Code / Telegraph
 - RS-232/UART
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
 - Morse Code / Telegraph
 - RS-232/UART
 - Universal
 - Asynchronous
 - Receiver
 - Transmitter
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
 - Morse Code / Telegraph
 - RS-232/UART
 - Agreed Upon Period Length
 - DOT / DASH
 - Baud Rate
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
 - Morse Code / Telegraph
 - RS-232/UART
 - Agreed Upon Period Length
 - Accurate Timing Device
Communication Principles

- Asynchronous Communication
 - No External Clock Signal
 - Morse Code / Telegraph
 - RS-232/UART
 - Agreed Upon Period Length
 - Accurate Timing Device
 - Crystals
 - Oscillators
 - System Clock Dividers
 - Atmel AVR with 10MHz clock
 - $10MHz / 20 / 4 = 125000$
 - 115200 vs. 125000 = 8.5% error
Communication Principles

- Asynchronous Communication
- The Problem
Communication Principles

- Asynchronous Communication
- The Problem
 - Simple peripherals
 - Reduced external components
 - No need to set period length
 - Wide range of frequencies
Communication Principles

- Asynchronous Communication
- The Problem
- Synchronous Communication
Communication Principles

- Asynchronous Communication
- The Problem
- Synchronous Communication
 - Uses Dedicated Clock Signal
Communication Principles

- Asynchronous Communication
- The Problem
- Synchronous Communication
 - Uses Dedicated Clock Signal
 - Edison Stock Quotes
Communication Principles

CLOCK

DATA
Communication Principles

CLOCK

DATA
Communication Principles

- CLOCK
- DATA

1
Communication Principles
Communication Principles
Communication Principles

CLOCK

DATA 1 0
Communication Principles

CLOCK

DATA 1 0 1
Communication Principles

CLOCK

DATA

1 0 1
Communication Principles

CLOCK

DATA

1 0 1 0
Communication Principles

- Asynchronous Communication
- The Problem
- Synchronous Communication
 - Uses Dedicated Clock Signal
 - Edison Stock Quotes
 - NXP Developed I2C
Communication Principles

- Asynchronous Communication
- The Problem
- Synchronous Communication
 - Uses Dedicated Clock Signal
 - Edison Stock Quotes
 - NXP Developed I2C
 - Intel Refined with SMBus
Interfacing

- Physical Connections
Interfacing

- Physical Connections
 - VCC, SCL, SDA, VSS
Interfacing

- Physical Connections
 - VCC, SCL, SDA, VSS
 - Pull-Ups
Interfacing

- Physical Connections
 - VCC, SCL, SDA, VSS
 - Pull-Ups
 - Address
Interfacing

- Physical Connections
 - VCC, SCL, SDA, VSS
 - Pull-Ups
 - Address
 - Level Shifters
Interfacing

- Physical Connections
- Drivers
Interfacing

- Physical Connections
- Drivers
 - Bootloaders
Interfacing

- Physical Connections
- Drivers
 - Bootloaders
 - Linux Kernel
Interfacing

- Physical Connections
- Drivers
 - Bootloaders
 - Linux Kernel
Interfacing

- Physical Connections
- Drivers
 - Bootloaders
 - Linux Kernel
 - GPIO Bit-Bang
Interfacing

- Physical Connections
- Drivers
 - Bootloaders
 - Linux Kernel
 - GPIO Bit-Bang
 - I2C CharDev
Interfacing

- Physical Connections
- Drivers
- I2C Tools
Interfacing

- Physical Connections
- Drivers
- I2C Tools
 - `i2cdetect`
Interfacing

- Physical Connections
- Drivers
- I2C Tools
 - i2cdetect
 - i2cdump
Interfacing

- Physical Connections
- Drivers
- I2C Tools
 - i2cdetect
 - i2cdump
 - i2cget
 - i2cset
Board Bringup

- I2C GPIO Expanders
Board Bringup

- I2C GPIO Expanders
 - Devices
Board Bringup

- I2C GPIO Expanders
 - Devices
 - 4 to 24 Inputs or Output
Board Bringup

- I2C GPIO Expanders
 - Devices
 - 4 to 24 Inputs or Output
 - IRQ for input events
Board Bringup

- I2C GPIO Expanders
 - Devices
 - 4 to 24 Inputs or Output
 - IRQ for input events
 - Voltage range support
Board Bringup

- **I2C GPIO Expanders**
 - **Devices**
 - 4 to 24 Inputs or Output
 - IRQ for input events
 - Voltage range support
 - Generic PCF857X
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Only needs 2 GPIOS from Host
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Only needs 2 GPIOS from Host
 - Different Voltage Levels
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Only needs 2 GPIOS from Host
 - Different Voltage Levels
 - New GPIOs are Transparent
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Only needs 2 GPIOs from Host
 - Different Voltage Levels
 - New GPIOs are Transparent
 - Inputs used for versioning
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Debugging
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Debugging
 - Four Wire Connection
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Debugging
 - Four Wire Connection
 - Provide Buttons for Test Modes
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Debugging
 - Four Wire Connection
 - Provide Buttons for Test Modes
 - Provide LEDs for Low Level Feedback
Board Bringup

- I2C GPIO Expanders
 - Devices
 - Retro-fit
 - Debugging
 - Four Wire Connection
 - Provide Buttons for Test Modes
 - Provide LEDS for Low Level Feedback
 - Easily Removed when Done
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Average 256 Bytes
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Average 256 Bytes
 - Can be Write Protected
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMs
 - Devices
 - Average 256 Bytes
 - Can be Write Protected
 - Low Cost
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Average 256 Bytes
 - Can be Write Protected
 - Low Cost
 - Multiples per System
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - EDID
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - EDID
 - Part/Board Identifications
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - EDID
 - Part/Board Identifications
 - BeagleBone Capes
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - Debugging
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - Debugging
 - Four Wire Connection
 - Power
 - Data
 - Clock
 - Ground
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - Debugging
 - Four Wire Connection
 - Store Testing Cycle Data
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - Debugging
 - Four Wire Connection
 - Store Testing Cycle Data
 - Collect Board Interaction Data
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - Debugging
 - Four Wire Connection
 - Store Testing Cycle Data
 - Collect Board Interaction Data
 - Configure Test/Boot Modes
Board Bringup

- I2C GPIO Expanders
- I2C EEPROMS
 - Devices
 - Versioning
 - Debugging
 - Four Wire Connection
 - Store Testing Cycle Data
 - Collect Board Interaction Data
 - Configure Test/Boot Modes
 - Easily Removed when Done
Conclusion

- Communication Principles
Conclusion

- Communication Principles
- Drivers and Software Tools
Conclusion

- Communication Principles
- Drivers and Software Tools
- Board Bringup Use Cases
Conclusion

Questions?