

I don't want
your code

Linux Kernel Maintainers,
why are they so grumpy?

Greg Kroah-Hartman
gregkh@linuxfoundation.org

2,829 developers
 407 companies

Kernel releases 3.4.0 – 3.8.0
March 2012 – Feb 2013

6.98 changes per hour

2.6.20 to 2.6.24-rc8
Kernel releases 3.4.0 – 3.8.0
March 2012 – Feb 2013

7.38 changes per hour

3.8.0 release

2.6.20 to 2.6.24-rc8

Top developers by quantity
H. Hartley Sweeten 1438
Mark Brown 642
Al Viro 553
Axel Lin 532
Greg Kroah-Hartman 505
Daniel Vetter 418
Johannes Berg 403
Bill Pemberton 394
David Miller 387
Sachin Kamet 387

Kernel releases 3.4.0 – 3.8.0

Top Signed-off-by:
Greg Kroah-Hartman 7004
David S. Miller 3883
Mark Brown 2450
Mauro Carvalho Chehab 2436
John Linville 2213
Linus Torvalds 2193
Andrew Morton 1960
H. Hartley Sweeten 1450
Daniel Vetter 1044
Al Viro 981

Kernel releases 3.4.0 – 3.8.0

Who is funding this work?
1. “Amateurs” 13.9%
2. Red Hat 10.1%
3. Intel 8.4%
4. Unknown Individuals 4.5%
5. Linaro 4.4%
6. Texas Instruments 4.0%
7. Vision Engraving 3.2%
8. Novell 3.1%
9. IBM 3.0%
10. Google 2.3%

Kernel releases 3.4.0 – 3.8.0

Who is funding this work?
11. Samsung 2.2%
12. Wolfson Micro 1.5%
13. LINBIT 1.5%
14. Consultants 1.4%
15. Linux Foundation 1.3%
16. Nvidia 1.2%
17. Oracle 1.2%
18. Freescale 1.2%
19. Ingics Technology 1.2%
20. Broadcom 1.0%

Kernel releases 3.4.0 – 3.8.0

Kernel code
submission

Kernel code
accepted

“Working upstream
saves time and money”

2.6.20 to 2.6.24-rc8

Dan Frye – VP Open Systems, IBM
Dirk Hohndel – Chief Technologist, Intel

Maintainers are like editors in
the publishing industry.

– David Miller

2.6.20 to 2.6.24-rc8

Patches I received in a 2 week period

2.6.20 to 2.6.24-rc8

Patches I received in a 2 week period

487

2.6.20 to 2.6.24-rc8

Subject: [PATCH 48/48] ...

2.6.20 to 2.6.24-rc8

15 patch series, no order given

2.6.20 to 2.6.24-rc8

Patches 1, 3-10

2.6.20 to 2.6.24-rc8

“Signed-off-by:” in signature

2.6.20 to 2.6.24-rc8

Signature saying email was confidential

2.6.20 to 2.6.24-rc8

Tabs were converted to spaces

2.6.20 to 2.6.24-rc8

Leading spaces removed

2.6.20 to 2.6.24-rc8

diff in non-unified format

2.6.20 to 2.6.24-rc8

Patch created in driver directory

2.6.20 to 2.6.24-rc8

Patch created in /usr/src/linux-2.6.32

2.6.20 to 2.6.24-rc8

Made against different tree

2.6.20 to 2.6.24-rc8

Wrong coding style

2.6.20 to 2.6.24-rc8

Wrong coding style,
and acknowledged it

2.6.20 to 2.6.24-rc8

Would not compile

2.6.20 to 2.6.24-rc8

Broke the build on patch 3/6

2.6.20 to 2.6.24-rc8

Broke the build on patch 3/6
and fixed it on 6/6

2.6.20 to 2.6.24-rc8

Broke the build on patch 5/8

2.6.20 to 2.6.24-rc8

Broke the build on patch 5/8
Contained note that fix would be sent later

2.6.20 to 2.6.24-rc8

Patches that had nothing to do with me

2.6.20 to 2.6.24-rc8

1 patch, 450kb big (4500 lines added)

2.6.20 to 2.6.24-rc8

Obviously wrong kerneldoc

2.6.20 to 2.6.24-rc8

This was a calm two weeks

2.6.20 to 2.6.24-rc8

Case study of a Linaro patch submission

8 patch series for USB

No description of why they were needed

Half of the patches broke the build

Patches resent,
with no description of what changed

Replacements sent again, individually,
out of order

Third resend, no ordering at all.

Fourth resend,
described as second version

Insisted that 2 of these HAD
to go into 3.9-rc1.

Linaro senior developer resent
just the two patches.

Those two required a follow-on
patch to fix the Kconfig descriptions

Patches broke all non-DT systems

Driver maintainer returned
from vacation and reviewed them

Driver maintainer returned
from vacation and reviewed them

Every single one was broken

Driver maintainer returned
from vacation and reviewed them

Every single one was broken

“...you can answer at lot of questions like
this for yourself very easily, simply by
reading the source code.”

I will not accept a patch directly from
this developer, for a very long time

static void tty_slave_release(struct device *dev)
{
 struct tty_slave *tts = to_tty_slave(dev);

 kfree(tts);
 /* Test code to see if slave device get released */
 BUG();
}

It is in my self-interest
to ignore your patch

2.6.20 to 2.6.24-rc8

Give me no excuse
to reject your patch

2.6.20 to 2.6.24-rc8

What I will do for you:

2.6.20 to 2.6.24-rc8

Review your patch within 1-2 weeks

2.6.20 to 2.6.24-rc8

Offer semi-constructive criticism

2.6.20 to 2.6.24-rc8

Let you know the status of your patch

2.6.20 to 2.6.24-rc8

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24-rc8

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24-rc8

github.com/gregkh/presentation-maintainer

I don't want
your code

Linux Kernel Maintainers,
why are they so grumpy?

Greg Kroah-Hartman
gregkh@linuxfoundation.org

2,829 developers
 407 companies

Kernel releases 3.4.0 – 3.8.0
March 2012 – Feb 2013

This makes the Linux kernel the largest
contributed body of software out there that
has been created..

This is just the number of companies that we
know about, there are more that we do not,
and as the responses to our inquiries come
in, this number will go up.

6.98 changes per hour

2.6.20 to 2.6.24-rc8
Kernel releases 3.4.0 – 3.8.0
March 2012 – Feb 2013

For that year of development, we went at this
rate, 24 hours a day, 7 days a week. This is
up from last year, which was at 5.2 or so, so
we are increasing, which is scary, right?

7.38 changes per hour

3.8.0 release

2.6.20 to 2.6.24-rc8

This past 3.8 release was the fastest we have
ever created. That number shows just how
well the Linux kernel development model is
working. We are growing in developers and
in how fast we are developing overall.

Now this is just the patches we accepted, not
all of the patches that have been submitted,
lots of patches are rejected, as anyone who
has ever tried to submit a patch can attest
to.

Here's a picture of our development model, in a
simplified form.

We have about 3000 different developers. They
make a patch, and send it through email to the
file/driver maintainer. We have about 700
different maintainers listed in the kernel tree at
the moment. That maintainer reviews it, and if
they accept it, they forward it on to the
subsystem maintainer. We have around 85
different subsystem maintainers at the moment,
and there are about 160 different subsystem
trees that get merged to Linus.

Those maintainers have public kernel trees that
all get merged into the linux-next release every
day. Then, when the merge window opens up,
the subsystem maintainers send their stuff to
Linus.

Top developers by quantity
H. Hartley Sweeten 1438
Mark Brown 642
Al Viro 553
Axel Lin 532
Greg Kroah-Hartman 505
Daniel Vetter 418
Johannes Berg 403
Bill Pemberton 394
David Miller 387
Sachin Kamet 387

Kernel releases 3.4.0 – 3.8.0

Hartley - comedi
Mark – embedded sound
Axel – janitorial
Al – vfs and filesystem
Daniel – intel video
Johannes – intel wireless
Bill – janitorial
David – networking
Sachin – LINARO!

Greg – USB, staging, tty, etc.

Top Signed-off-by:
Greg Kroah-Hartman 7004
David S. Miller 3883
Mark Brown 2450
Mauro Carvalho Chehab 2436
John Linville 2213
Linus Torvalds 2193
Andrew Morton 1960
H. Hartley Sweeten 1450
Daniel Vetter 1044
Al Viro 981

Kernel releases 3.4.0 – 3.8.0

Greg – driver core, usb, staging
David – networking
Mark – embedded sound
Mauro - v4l
John – wireless networking
Linus - everything
Andrew – everything
Hartley – comedi
Daniel – intel graphics drivers
Al – vfs

Who is funding this work?
1. “Amateurs” 13.9%
2. Red Hat 10.1%
3. Intel 8.4%
4. Unknown Individuals 4.5%
5. Linaro 4.4%
6. Texas Instruments 4.0%
7. Vision Engraving 3.2%
8. Novell 3.1%
9. IBM 3.0%
10. Google 2.3%

Kernel releases 3.4.0 – 3.8.0

So you can view this as either 20% is done by
non-affiliated people, or 80% is done by
companies.

Now to be fair, if you show any skill in kernel
development you are instantly hired.

Why this all matters: If your company relies
on Linux, and it depends on the future of
Linux supporting your needs, then you
either trust these other companies are
developing Linux in ways that will benefit
you, or you need to get involved to make
sure Linux works properly for your
workloads and needs.

Who is funding this work?
11. Samsung 2.2%
12. Wolfson Micro 1.5%
13. LINBIT 1.5%
14. Consultants 1.4%
15. Linux Foundation 1.3%
16. Nvidia 1.2%
17. Oracle 1.2%
18. Freescale 1.2%
19. Ingics Technology 1.2%
20. Broadcom 1.0%

Kernel releases 3.4.0 – 3.8.0

Samsung 1021 patches
LF – 502 patches

Kernel code
submission

Kernel code
accepted

“Working upstream
saves time and money”

2.6.20 to 2.6.24-rc8

Dan Frye – VP Open Systems, IBM
Dirk Hohndel – Chief Technologist, Intel

Maintainers are like editors in
the publishing industry.

– David Miller

2.6.20 to 2.6.24-rc8

We work with developers to review, edit, suggest,
reject, and hopefully, accept patches.

We also field bug reports, fix problems, and kick
developers who are unresponsive.

When developers disappear, we end up taking over
the maintenance of their code.

Every once in a while we get to do what we really
love doing, new development.

Patches I received in a 2 week period

2.6.20 to 2.6.24-rc8

So, let's look at one of these subsystem
maintainers. I maintain the USB, driver core, tty,
staging, and a few other various parts of the
Linux kernel.

This 2 week timeframe is when we had our big
merge window, when all of the subsystem
maintainers sent patches off to Linus. During
this time frame, no core kernel developer sends
new stuff to subsystem maintainers, as they know
they are busy, and nothing that gets sent can
really be looked at until after the merge window
closes.

So, almost all of the patches I got in the past 2
weeks were not from developers that do a whole
lot of kernel work, nor were the, for the most
part, large patches with new things being
proposed for the kernel.

Patches I received in a 2 week period

487

2.6.20 to 2.6.24-rc8

Yeah, that's the number of patches I got
during the "slow" period of the kernel
development cycle. This does not include
the number of messages around those
patches as other developers commented on
them, or other various things about those
patches (like "have you applied my patch
yet?" messages.)

Now the large majority of these patches at
first glance look just fine. But I took a closer
look at them, and here's a short list of the
problems in the patches that were sent to
me.

Subject: [PATCH 48/48] ...

2.6.20 to 2.6.24-rc8

There were no 47 previous patches sent.

15 patch series, no order given

2.6.20 to 2.6.24-rc8

Am I supposed to guess?

Patches 1, 3-10

2.6.20 to 2.6.24-rc8

Number 2 never showed up.

“Signed-off-by:” in signature

2.6.20 to 2.6.24-rc8

This would require me to hand edit the patch
before I could apply it.

Signature saying email was confidential

2.6.20 to 2.6.24-rc8

That kind of goes against how you are
supposed to be sending Linux kernel
patches out to the world.

Tabs were converted to spaces

2.6.20 to 2.6.24-rc8

This makes applying the patch impossible.

Exchange does this for you, if you are working
for a corporation that has an Exchange
server, do what IBM, Intel, and Microsoft
have done in order to be able to contribute
to Linux kernel development, have a Linux
box somewhere in the corner that your
developers use as a mail server to send
patches out from.

Huawei is the only company that I know of
that successfully sends kernel patches
through an Exchange server, which is
amazing, I really don't know how they do it.

Leading spaces removed

2.6.20 to 2.6.24-rc8

This also makes applying the patch
impossible. I end up editing a lot of patches
by hand, cursing all the while, just to get
them to apply because of broken email
servers and clients.

diff in non-unified format

2.6.20 to 2.6.24-rc8

I honestly didn't know that diff could still
create output in this format anymore, I
assumed that as no one ever found it useful,
it wasn't used anymore.

Patch created in driver directory

2.6.20 to 2.6.24-rc8

Patches need to be created in the root of the
kernel source tree, as that's where I have to
be in order to apply them properly.

This seems to happen a lot to first-time patch
submitters, it's a very common problem.

Patch created in /usr/src/linux-2.6.32

2.6.20 to 2.6.24-rc8

How many different problems can you see
here in just this one example?

Old and obsolete kernel version, full path to
root, developer doing kernel work as root,
probably more.

Made against different tree

2.6.20 to 2.6.24-rc8

Someone made a patch against the scsi
subsystem development tree when sending
me a USB patch. Why they thought that was
a good idea I have no idea.

Wrong coding style

2.6.20 to 2.6.24-rc8

There's no excuse for doing something like
this anymore, we have automated tools that
fix this up for you.

Wrong coding style,
and acknowledged it

2.6.20 to 2.6.24-rc8

At least in this patch, the author knew they
were doing something wrong, It's just that
they thought they were more important than
the 3000 other kernel developers and didn't
have to play by the rules of everyone else.

Would not compile

2.6.20 to 2.6.24-rc8

Just looking at the patch it was obvious that it
had never been compiled, and sure enough,
the compiler spit out a bunch of errors.

Broke the build on patch 3/6

2.6.20 to 2.6.24-rc8

This was a series of patches, and the build
broke on the 3rd patch that was applied.

Broke the build on patch 3/6
and fixed it on 6/6

2.6.20 to 2.6.24-rc8

But, I looked closer, and the developer at
least realized this, and fixed it in their last
patch in the series, thinking that all was
now good, as it didn't really matter that for
the past 3 patches, the build was broken.

Broke the build on patch 5/8

2.6.20 to 2.6.24-rc8

There was another patch series that also
broke the build in the middle of it.

Broke the build on patch 5/8
Contained note that fix would be sent later

2.6.20 to 2.6.24-rc8

But this one was better, it had a note saying
that they knew the build was broken, and
they would fix it up later, at some unknown
time in the future, but these 8 patches
should be accepted now anyway.

Patches that had nothing to do with me

2.6.20 to 2.6.24-rc8

Now I know I maintain a lot of different parts
of the kernel, but for some reason someone
sent me a patch for the x86 core code,
copied to no one else, thinking that I was
the one that could accept it.

1 patch, 450kb big (4500 lines added)

2.6.20 to 2.6.24-rc8

Luckily, another developer told the author
that this was too big and needed to be
broken up into smaller pieces before anyone
would review it. And then, three different
developers went and reviewed it anyway, so
I don't think the author learned that lesson
at all.

Obviously wrong kerneldoc

2.6.20 to 2.6.24-rc8

kerneldoc is the format that you can write
comments in the code and get them
included in the kernel api documentation
that is automatically generated. When you
get the format of it wrong, the tools will tell
you.

Here was someone who was trying to write
documentation, but got the format wrong,
and hadn't even run the tools to see if it was
generated properly.

This was a calm two weeks

2.6.20 to 2.6.24-rc8

Now, I'm not asking you to take pity on me, just
realize that this is the level of incompetence that
every single one of those 700 developers
encounter all the time.

So when you think we are acting grumpy,
remember, how would you act if you had to deal
with this all of the time?

Let's get back to what the goal is here. You want to
create a patch that is accepted as it does
something that you want to do in Linux. The
maintainer wants to reject it.

Case study of a Linaro patch submission

8 patch series for USB

Let's look at a patchset from Linaro that was sent to
me over the past month.

You all should really know better than to do things
this badly.

No description of why they were needed

1 sentence description of what the patches did, but
anyone can read that.

Half of the patches broke the build

Obviously not even tested.

Patches resent,
with no description of what changed

I have no idea if they were fixed or not.

Replacements sent again, individually,
out of order

Someone else from Linaro stepped in, told them to
fix this all up and resend properly.

Third resend, no ordering at all.

Rejected.

Fourth resend,
described as second version

Obviously not true, am I stupid?

Insisted that 2 of these HAD
to go into 3.9-rc1.

We are now days away from the merge window
closing for patches.

Linaro senior developer resent
just the two patches.

We are now days away from the merge window
closing for patches.

The Linaro senior developer stepped in, and said
that these two were ok to apply.

Those two required a follow-on
patch to fix the Kconfig descriptions

Ok, people forget to update the documentation,
that's normal.

Patches broke all non-DT systems

1 week after my merge window closed, I reverted
these.

Driver maintainer returned
from vacation and reviewed them

Driver maintainer returned
from vacation and reviewed them

Every single one was broken

Driver maintainer returned
from vacation and reviewed them

Every single one was broken

“...you can answer at lot of questions like
this for yourself very easily, simply by
reading the source code.”

I will not accept a patch directly from
this developer, for a very long time

Do you blame me?

static void tty_slave_release(struct device *dev)
{
 struct tty_slave *tts = to_tty_slave(dev);

 kfree(tts);
 /* Test code to see if slave device get released */
 BUG();
}

It's not just Linaro.

This was submitted by a company that has much
more experience than Linaro in kernel
development.

It was asked to be merged.

It was obviously never actually tested.

This was the 5th version of this patch.

It is in my self-interest
to ignore your patch

2.6.20 to 2.6.24-rc8

Seriously. It's easier for the maintainer to not
accept your code at all. To accept it, it takes time to
review it, apply it, send it on up the development
chain, handle any problems that might happen with
the patch, accept responsibility for the patch,
possibly fix any problems that happen later on
when you disappear, and maintain it for the next 20
years.

That's a lot of work that you are asking someone
else to do on your behalf. You are asking someone
who doesn't usually work for your company, who
probably lives in a different country, who you have
never met in person, to assume responsibility for
your work, and to do extra work on top of the
normal work they do in the kernel every day.

So you can see how it's in my interest to ignore
your patch. And it's in your interest to keep me
from ignoring it, because you want it accepted.

Give me no excuse
to reject your patch

2.6.20 to 2.6.24-rc8

So your goal is, when sending a patch, is to give
me NO excuse to not accept it. To make it such
that if I ignore it, or reject it, I am the one that is the
problem here, not you.

What can you do to keep me from rejecting your
patch outright
.
First off, don't do any of the things I listed above,
that's obvious, right? But that's a "do not do" list,
how about a list of what to do:

What I will do for you:

2.6.20 to 2.6.24-rc8

So, finally, you created the perfect patch
series, took all review into account, and sent
it correctly, without corrupting the patch.

What should you expect from me, the
subsystem maintainer?

Review your patch within 1-2 weeks

2.6.20 to 2.6.24-rc8

Some subsystem maintainers try to get to
patches even faster than this, but with travel
and different conferences, the best that I
can normally do is about 1-2 weeks.

If I don't respond in that time frame, just ask
what is going on. I have no problem with
people asking about their patch status.
Sometimes patches end up getting dropped
on the floor accidentally, and if I'm being
slow I have no problem with being called on
it, so don't feel bad about checking up on it.

But please wait 1-2 weeks, don't be rude and
send a patch at night, and then in the
morning send a complaining email asking
why it wasn't reviewed already. This
happens more than you want to know.

Offer semi-constructive criticism

2.6.20 to 2.6.24-rc8

I can't always promise constructive criticism,
but I'll try my best.

Let you know the status of your patch

2.6.20 to 2.6.24-rc8

I have a set of scripts that I got from Andrew
Morton that will email you when I apply your
patch to one of my development trees saying
where it has been applied and when you can
expect to see it show up in Linus's tree. There is
no reason that all kernel maintainers shouldn't do
this, and it's nice to see that more and more are.

But, I know from personal experience, there are
maintainers in this room that I send patches to
and I never know what happens to them. A few
months later I will see them show up in Linus's
tree, usually after I forgot about them.

That's not acceptable, and you should not allow
this, push back on your subsystem maintainer to
use something like this, to keep you informed.
Andrew's scripts are public, as are my variations
of them, for everyone to use.

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24-rc8

Linus said this after I wrote a small rant about some
truly horrible Linux kernel driver code that I found
online.

It had all sorts of "this code is never to be included
in the Linux kernel" warnings all over it, despite it
being a Linux kernel driver. And in reading the
code, it was obvious why the author never wanted
it in the kernel, it was one of the worse things I had
ever seen, and that says a lot. After I complained
about it, I felt bad, as someone had obviously spent
a lot of time on it, but Linus replied with the above
quote.

And as always, it turns out that Linus is right.

“Publicly making fun of people is half
 the fun of open source programming.

 In fact the main reason to eschew
 programming in closed environments
 is that you can't embarrass people in
 public.”

– Linus Torvalds

2.6.20 to 2.6.24-rc8

If that author had ever thought that the code would
have been posted publicly, they wouldn't have
written such crap. That's what maintainers and
public code review is really for in the end, keeping
the crap out of the Linux kernel, which benefits
everyone involved.

So while it seems that we kernel developers can be
a real harsh bunch of people, it is because of that
harshness that Linux is as good as it is.

You want us to be tough, because it makes you
better programmers in the end, knowing you will
have to defend your code.

And that is why I love doing this work, it makes
everyone involved produce the best possible code,
which in the end, is what matters the most.

github.com/gregkh/presentation-maintainer

Obligatory Penguin Picture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

