
Name: Pintu Kumar

Email: pintu.k@samsung.com

Samsung R&D Institute India - Bangalore

Embedded Linux Conference, San Jose, CA, March-2015 1

Objective

Introduction

Memory Reclaim Techniques in Kernel

System-wide Memory Reclaim Techniques

Experimentation Results

Summary

Conclusion

Embedded Linux Conference, San Jose, CA, March-2015 2

CONTENT

 To quickly recover entire system memory in one shot
without killing or closing already running application.

 To reduce memory fragmentation to some extent.

 To avoid higher-order allocation to enter slow path again
and again.

 To provide interface to user space for quickly reclaiming
entire system memory as much as possible.

 To bring back the entire system memory to a stage where it
looks like fresh reboot.

Embedded Linux Conference, San Jose, CA, March-2015 3

OBJECTIVE

 Memory fragmentation?
 Non availability of higher order contiguous pages, although there are lots

of free pages in smaller order which are not contiguous.

Embedded Linux Conference, San Jose, CA, March-2015 4

 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone
Normal

972 352 171 25 0 0 0 0 0 0 0

cat /proc/buddyinfo

Higher-order pages

Free Memory = (972*1 + 352*2 + 171*4 + 25*8) = 2560*4K = 10MB

Although we have 10MB memory free, still the request for 2^4 order (16*4K =
64K contiguous block) may fail.
This situation is known as external memory fragmentation.

INTRODUCTION

Embedded Linux Conference, San Jose, CA, March-2015 5

 To measure fragmentation level across each order, following
formula can be used:

TotalFreePages = Total number of free pages in each Node
N = MAX_ORDER - 1 The highest order of allocation
j = the desired order requested
i = page order 0 to N
Ki = Number of free pages in ith order block

Embedded Linux Conference, San Jose, CA, March-2015 6

 Cat /proc/buddyinfo can be used to measure the
fragmentation level.

 We have developed a user-space utility to measure the
overall fragmentation level of the system.

 OUTPUT is shown below:
Order 2-Power Nr Pages Free Pages Frag Level (%)

0 1 972 972 0%

1 2 352 704 37%
2 4 171 684 65%

3 8 25 200 92%
4 16 0 0 100%
5 32 0 0 100%

6 64 0 0 100%
7 128 0 0 100%

8 256 0 0 100%
9 512 0 0 100%

10 1024 0 0 100%
Total 2560 81%

A
ve

rage
 valu

e

Embedded Linux Conference, San Jose, CA, March-2015 7

 However, if COMPACTION is enabled, the fragmentation
level can be measured directly using:

 cat /sys/kernel/debug/extfrag/unusable_index

Node 0, zone
Normal

0.000 3.797 6.547 9.219 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Order Index FragLevel (%)

0 0.000 0.00
1 0.379 37.90

2 0.654 65.40
3 0.921 92.10

4 1.000 100.00
5 1.000 100.00

6 1.000 100.00
7 1.000 100.00
8 1.000 100.00

9 1.000 100.00
10 1.000 100.00

Average 81.40

 Here, to get the fragmentation level, just
multiply the unusable index value by
100.

 You can observe that the results
obtained by our frag level calculation in
previous slide and this usable index is
almost same.

 Soon we will contribute this utilities to
open source.

Embedded Linux Conference, San Jose, CA, March-2015 8

__alloc_pages_nodemask

Set preferred zone

page = get_page_from_freelist

if
!page

?

page = __alloc_pages_slowpath

if
gfp_flag &

__GFP_NO_KSWAPD
?

wake_all_kswapd

page = get_page_from_freelist

restart

if
!page

?

(SUCCESS)
return page

A

rebalance

YES

NO

YES

NO

Set ALLOC_CMA flag based on
MIGRATE_MOVABLE

1

2

MEMORY RECLAIM TECHNIQUES IN KERNEL

If the allocation enters this
slowpath, that means the
preferred zone is already
fragmented and the system
needs a reclaim to satisfy the
current allocation.
Thus the system may enter
slowpath again and again for all
future allocation of this order
causing decrease in
performance.

Embedded Linux Conference, San Jose, CA, March-2015 9

page =
__alloc_pages_high_priority

if
page

?

page =
__alloc_pages_direct_compact

page =
__alloc_pages_direct_reclaim

if
(!did_some_progres

s) ?

page = __alloc_pages_may_oom

if
page

?

if
(order > 3)

?
restart

should_alloc_ret
ry?

rebalance

page =
__alloc_pages_direct_compact

if
page

?

A

SUCCESS FAIL

(If not __GFP_NOFAIL)

if
page

?

if
page

?

B

YES YES YES
NO NO

NO

YES

NO

YES

NO

NO

NO

NO

YES

YES

YES

3 4 5

6

7

This is the place where system performs global
reclaim based on the order of request

Embedded Linux Conference, San Jose, CA, March-2015 10

SYSTEM-WIDE MEMORY RECLAIM TECHNIQUES

shrink_all_memory

Initialize scan_control
structure

#if defined CONFIG_HIBERNATION || CONFIG_SHRINK_MEMORY

#endif

nr_reclaimed =
do_try_to_free_pages

return nr_reclaimed
pages

Input = totalram_pages

shrink_zones

Find reclaimable pages in
this zone

shrink_slab

if
nr_reclaimed >=

nr_to_reclaim
?

return nr_reclaimed

.gfp_mask = (GFP_HIGHUSER_MOVABLE |
GFP_RECLAIM_MASK)

.may_swap = 1

.hibernation_mode = 0

YES

Embedded Linux Conference, San Jose, CA, March-2015 11

 System-wide memory reclaim in kernel can be performed
using the shrink_all_memory() under mm/vmscan.c

 It takes only one input: no. of pages to be reclaimed. In our
case we pass the entire system memory.

 It can perform entire system-wide reclaim across all zones,
in one shot.

 It can reduce fragmentation by bringing back high-order
pages quickly, and avoid slowpath.

 Currently shrink_all_memory is used only during
hibernation case: kernel/power/snapshot.c:
hibernate_preallocate_memory().

 We can use this function to invoke system-wide reclaim
even from user-space or any other kernel sub-system.

Embedded Linux Conference, San Jose, CA, March-2015 12

Shrink Memory From User Space

int shrink_memory(struct shrink_status *status)
{
 int memfree1,memfree2;
 int totalfreed = 0;
 int ntimes = 0;

 while (ntimes < 10) {
 fprintf(stderr,". ");
 memfree1 = get_free_memory();
 system("echo 1 > /proc/sys/vm/shrink_memory");
 sleep(1);
 system("echo 1 > /proc/sys/vm/compact_memory");
 sleep(1);
 memfree2 = get_free_memory();
 totalfreed = totalfreed + (memfree2 - memfree1);
 ntimes++;
 }
 status->total_recovered = totalfreed;
 return 0;
}

Embedded Linux Conference, San Jose, CA, March-2015 13

Shrink Memory from ION driver

Application

ION

ION System Heap

page = alloc_buffer_page(orders)

if
page fail &&

order == 4
?

Shrink all memory (totalram_pages)

orders[] = {8, 4, 0}

Embedded Linux Conference, San Jose, CA, March-2015 14

EXPERIMENTATION RESULTS – USER SPACE

Test Results: ARM: Device 1

RAM: 512MB

Kernel Version: 3.4

free -tm total used free shared buffers cached

Mem: 468 390 78 0 16 172

-/+ buffers/cache: 201 267

ZRAM Swap: 0 0 0

Total: 468 390 78

Embedded Linux Conference, San Jose, CA, March-2015 15

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 217 86 24 24 8 2 2 3 1 2 17

Scenario1: After initial boot-up.

free -tm total used free shared buffers cached

Mem: 468 217 250 0 0 21

-/+ buffers/cache: 195 272

ZRAM Swap: 0 0 0

Total: 468 217 250

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 246 230 97 40 16 3 6 3 5 4 57

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 16

Output of memory shrinker after boot-up:

sh-3.2# ./memory_shrinker.out
Total Memory: 468 MB
 Used Memory: 390 MB
 Free Memory: 78 MB
 Cached Memory: 189 MB

 Used Memory: 216 MB
 Free Memory: 252 MB
 Cached Memory: 22 MB

Total Memory Recovered: 174 MB

 After initial boot-up, free memory was: 78MB

 Total memory recovered (10 iterations), by memory shrinker: 174MB.

 Final free memory becomes: ~250MB

Embedded Linux Conference, San Jose, CA, March-2015 17

BEFORE:

Zone: Normal
Order Fragmentation[%]

0 0.00%

1 1.00%

2 1.90%

3 2.30%

4 3.30%
5 3.90%

6 4.30%
7 4.90%
8 6.80%

9 8.10%

10 13.20%

Overall 4.52%

 Initial boot-up fragmentation level was: 4.52%

 With memory shrinker fragmentation level becomes: 2.90%

Zone: Normal
Order Fragmentation[%]

0 0.00%
1 0.30%
2 1.00%

3 1.60%

4 2.10%

5 2.50%
6 2.60%

7 3.20%
8 3.80%

9 5.80%
10 9.00%

Overall 2.90%

AFTER:

Memory Fragmentation Results:

free -tm total used free shared buffers cached

Mem: 468 455 12 0 4 72

-/+ buffers/cache: 379 88

ZRAM Swap: 93 34 59

Total: 562 490 71

Embedded Linux Conference, San Jose, CA, March-2015 18

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 972 352 171 52 14 3 1 0 0 0 0

Scenario2: After many application launch.

free -tm total used free shared buffers cached

Mem: 468 362 105 0 3 41

-/+ buffers/cache: 318 150

ZRAM Swap: 93 90 3

Total: 562 453 109

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 473 218 1316 802 373 102 31 9 2 3 0

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 19

Output of memory shrinker after application launch and moving them to
background:

sh-3.2# ./memory_shrinker.out
Total Memory: 468 MB
 Used Memory: 457 MB
 Free Memory: 11 MB
 Cached Memory: 77 MB

 Used Memory: 323 MB
 Free Memory: 145 MB
 Cached Memory: 45 MB

Total Memory Recovered: 136 MB

 After many application launch, free memory becomes: 12MB

 Total memory recovered (10 iterations), by memory shrinker: 136MB.

 Final free settles down to: ~105MB (because some memory are immediately
consumed back by the running applications/services)

Embedded Linux Conference, San Jose, CA, March-2015 20

Memory Compaction Results:

sh-3.2# cat /proc/vmstat | grep compact
compact_blocks_moved 40
compact_pages_moved 1816
compact_pagemigrate_failed 33865
compact_stall 510
compact_fail 192
compact_success 3

sh-3.2# cat /proc/vmstat | grep compact
compact_blocks_moved 64
compact_pages_moved 3197
compact_pagemigrate_failed 59042
compact_stall 662
compact_fail 192
compact_success 3

BEFORE: AFTER:

 Even after memory shrinker, compaction did not succeed.

 But lots of pages were moved, which resulted into creating more numbers
of higher order pages.

Embedded Linux Conference, San Jose, CA, March-2015 21

BEFORE:

Zone: Normal
Order Fragmentation[%]

0 0.00%

1 30.10%

2 52.50%

3 74.30%

4 87.60%
5 94.80%

6 97.90%
7 100.00%
8 100.00%

9 100.00%

10 100.00%

Overall 76.11%

 After many application launch fragmentation level becomes: 76.11%

 With memory shrinker, fragmentation level decreases to: 54.35%

Zone: Normal
Order Fragmentation[%]

0 0.00%
1 1.70%
2 3.30%

3 22.60%

4 46.40%

5 68.60%
6 80.70%

7 88.10%
8 92.30%

9 94.20%
10 100.00%

Overall 54.35%

AFTER:

Memory Fragmentation Results:

Embedded Linux Conference, San Jose, CA, March-2015 22

Test Results: ARM: Device 2

RAM: 512MB

Kernel Version: 3.10

free -tm total used free shared buffers cached

Mem: 460 429 31 0 24 176

-/+ buffers/cache: 229 231

ZRAM Swap: 0 0 0

Total: 460 429 31

Embedded Linux Conference, San Jose, CA, March-2015 23

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 445 197 88 22 5 3 2 1 2 3 4

Scenario1: After initial boot-up.

free -tm total used free shared buffers cached

Mem: 460 271 188 0 6 59

-/+ buffers/cache: 205 254

ZRAM Swap: 0 0 0

Total: 460 271 188

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 298 348 489 1189 611 199 42 23 11 6 8

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 24

Output of memory shrinker after boot-up:

sh-3.2# ./memory_shrinker.out
Total Memory: 460 MB
 Used Memory: 429 MB
 Free Memory: 31 MB
 Cached Memory: 200 MB

 Used Memory: 209 MB
 Free Memory: 251 MB
 Cached Memory: 66 MB

Total Memory Recovered: 221 MB

 After initial boot-up, free memory was: 31 MB

 Total memory recovered (10 iterations), by memory shrinker: 221 MB.

 Final free memory becomes: ~188 MB (after services reclaimed back its
memory)

Embedded Linux Conference, San Jose, CA, March-2015 25

BEFORE:

Zone: Normal
Order Fragmentation[%]

0 0.00%

1 5.60%

2 10.50%

3 14.90%

4 17.10%
5 18.10%

6 19.30%
7 20.90%
8 22.50%

9 29.00%

10 48.30%

Overall 18.75%

 Here, fragmentation level increases, because lots of lower order pages were
recovered compared to higher order.

 Although final free memory increased from: 31MB to 188MB

Zone: Normal
Order Fragmentation[%]

0 0.00%
1 1.00%
2 11.20%

3 23.70%

4 39.40%

5 55.60%
6 66.30%

7 70.70%
8 75.40%

9 80.50%
10 86.40%

Overall 46.38%

AFTER:

Memory Fragmentation Results:

free -tm total used free shared buffers cached

Mem: 460 440 20 0 5 65

-/+ buffers/cache: 369 90

ZRAM Swap: 92 60 31

Total: 552 501 51

Embedded Linux Conference, San Jose, CA, March-2015 26

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 1728 498 138 39 1 0 0 0 0 1 1

Scenario2: After many application launch.

free -tm total used free shared buffers cached

Mem: 460 352 107 0 1 31

-/+ buffers/cache: 319 140

ZRAM Swap: 92 92 0

Total: 552 444 107

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 595 2884 1236 432 201 89 34 12 6 1 1

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 27

Output of memory shrinker after application launch and moving them to
background:

sh-3.2# ./memory_shrinker.out
Total Memory: 460 MB
 Used Memory: 441 MB
 Free Memory: 19 MB
 Cached Memory: 72 MB

 Used Memory: 327 MB
 Free Memory: 133 MB
 Cached Memory: 33 MB

Total Memory Recovered: 114 MB

 After many application launch, free memory becomes: 19 MB

 Total memory recovered (10 iterations), by memory shrinker: 114 MB.

 Final free settles down to: ~107 MB (because some memory are immediately
consumed back by the running applications/services)

Embedded Linux Conference, San Jose, CA, March-2015 28

Memory Compaction Results:

sh-3.2# cat /proc/vmstat | grep compact
compact_migrate_scanned 164681
compact_free_scanned 1064111
compact_isolated 33137
compact_stall 69
compact_fail 42
compact_success 19

sh-3.2# cat /proc/vmstat | grep compact
compact_migrate_scanned 223633
compact_free_scanned 1116864
compact_isolated 54976
compact_stall 69
compact_fail 42
compact_success 19

BEFORE: AFTER:

 Even after memory shrinker, compaction did not succeed.

 But lots of pages were migrated/scanned, which resulted into creating more
numbers of higher order pages.

Embedded Linux Conference, San Jose, CA, March-2015 29

BEFORE:

Zone: Normal
Order Fragmentation[%]

0 0.00%

1 32.40%

2 52.10%

3 63.00%

4 69.20%
5 69.50%

6 69.50%
7 69.50%
8 69.50%

9 69.50%

10 79.60%

Overall 58.53%

 Although, overall fragmentation becomes little less, in this case, but still it
could recover large number of middle order pages.

Zone: Normal
Order Fragmentation[%]

0 0.00%
1 2.10%
2 23.00%

3 40.90%

4 53.40%

5 65.10%
6 75.40%

7 83.30%
8 88.80%

9 94.40%
10 96.20%

Overall 56.60%

AFTER:

Memory Fragmentation Results:

Embedded Linux Conference, San Jose, CA, March-2015 30

Test Results: Ubuntu 12.10

RAM: 768MB

Kernel Version: 3.10

free -tm total used free shared buffers cached

Mem: 749 697 51 0 27 252

-/+ buffers/cache: 417 332

Physical Swap: 1021 0 1021

Total: 1771 697 1073

Embedded Linux Conference, San Jose, CA, March-2015 31

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 2 2 2 0 3 1 2 1 1 1 0
Node 0, zone Normal 48 188 126 107 38 13 4 1 1 1 8

Scenario1: After initial boot-up.

free -tm total used free shared buffers cached

Mem: 749 331 417 0 21 90

-/+ buffers/cache: 219 529

Physical Swap: 1021 302 719

Total: 1771 634 1136

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 1 1 2 1 3 3 2 2 3 1 2
Node 0, zone Normal 151 124 65 37 31 20 2 44 52 18 71

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 32

Output of memory shrinker after boot-up:

sh-3.2# ./memory_shrinker.out
Total Memory: 749 MB
 Used Memory: 698 MB
 Free Memory: 51 MB
 Cached Memory: 281 MB

 Used Memory: 84 MB
 Free Memory: 665 MB
 Cached Memory: 112 MB

Total Memory Recovered: 615 MB

 After initial boot-up, free memory was: 51 MB

 Total memory recovered (10 iterations), by memory shrinker: 615 MB.

 Final free memory becomes: ~417 MB (after some services/applications
reclaimed back its memory)

Embedded Linux Conference, San Jose, CA, March-2015 33

BEFORE:

Zone: DMA Normal
Order Fragmentation[%] Fragmentation[%]

0 0.00% 0.00%

1 0.10% 0.00%

2 0.50% 2.40%

3 1.20% 6.60%

4 1.20% 13.70%
5 5.50% 18.80%

6 8.40% 22.20%
7 19.80% 24.40%
8 31.30% 25.40%

9 54.20% 27.60%

10 100.00% 31.80%

Overall 20.20% 15.72%

 Here, fragmentation reduces for both the zones.
 Plenty of higher order pages were recovered.
 Final free memory increased from: 51MB to 417MB

Zone: DMA Normal
Order Fragmentation[%] Fragmentation[%]

0 0.00% 0.00%
1 0.00% 0.10%
2 0.00% 0.20%

3 0.20% 0.50%

4 0.40% 0.70%

5 1.70% 1.20%
6 4.20% 1.80%

7 7.50% 2.00%
8 14.10% 7.40%

9 33.90% 20.40%
10 47.10% 29.30%

Overall 9.92% 5.78%

AFTER:

Memory Fragmentation Results:

free -tm total used free shared buffers cached

Mem: 749 685 63 0 5 87

-/+ buffers/cache: 593 156

Physical Swap: 1021 445 576

Total: 1771 1130 640

Embedded Linux Conference, San Jose, CA, March-2015 34

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 31 6 9 5 6 6 0 0 0 1 0
Node 0, zone Normal 4039 859 336 120 113 66 25 6 0 0 1

Scenario2: After many application launch.

free -tm total used free shared buffers cached

Mem: 749 620 128 0 11 129

-/+ buffers/cache: 479 270

Physical Swap: 1021 580 441

Total: 1771 1201 569

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone DMA 89 84 75 58 43 19 8 2 1 1 0
Node 0, zone Normal 349 388 270 66 46 23 16 12 3 0 21

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 35

Output of memory shrinker after application launch and moving them to
background:

sh-3.2# ./memory_shrinker.out
Total Memory: 749 MB
 Used Memory: 704 MB
 Free Memory: 45 MB
 Cached Memory: 93 MB

 Used Memory: 166 MB
 Free Memory: 583 MB
 Cached Memory: 142 MB

Total Memory Recovered: 545 MB

 After many application launch, free memory becomes: 45 MB

 Total memory recovered (10 iterations), by memory shrinker: 545 MB.

 Final free settles down to: ~ 128 MB (because some memory are
immediately consumed back by the running applications/services)

Embedded Linux Conference, San Jose, CA, March-2015 36

BEFORE:

Zone: DMA Normal
Order Fragmentation[%] Fragmentation[%]

0 0.00% 0.00%

1 3.30% 25.20%

2 4.60% 36.30%

3 8.50% 45.20%

4 12.90% 51.60%
5 23.30% 63.50%

6 44.20% 77.50%
7 44.20% 88.10%
8 44.20% 93.20%

9 44.20% 93.20%

10 100.00% 69.64%

Overall 29.95% 60.64%

 Here, fragmentation reduces drastically for Normal zone.
 But plenty of higher order pages were recovered from both the zones.
 Also Final free memory increases by 8-fold, from: 51MB to 417MB

Zone: DMA Normal
Order Fragmentation[%] Fragmentation[%]

0 0.00% 0.00%
1 2.30% 0.70%
2 6.60% 3.40%

3 14.40% 7.00%

4 26.40% 8.90%

5 44.30% 11.40%
6 60.10% 14.00%

7 73.40% 17.50%
8 80.00% 22.80%

9 86.70% 25.50%
10 100.00% 25.50%

Overall 44.93% 12.43%

AFTER:

Memory Fragmentation Results:

Embedded Linux Conference, San Jose, CA, March-2015 37

EXPERIMENTATION RESULTS – KERNEL SPACE

Test Results: ARM: Device 2

RAM: 512MB

Kernel Version: 3.10

Using: ION Driver in Kernel

Embedded Linux Conference, San Jose, CA, March-2015 38

Scenario3: After running many applications

free -tm total used free shared buffers cached

Mem: 460 453 7 0 2 58

-/+ buffers/cache: 391 68

ZRAM Swap: 92 0 92

Total: 552 453 99

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 162 104 287 46 0 0 0 0 0 0 0

free -tm total used free shared buffers cached

Mem: 460 331 128 0 3 52

-/+ buffers/cache: 275 184

ZRAM Swap: 92 85 7

Total: 552 416 135

buddyinfo 2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰
Node 0, zone Normal 271 139 1563 1380 462 101 14 2 7 1 1

BEFORE:

AFTER:

Embedded Linux Conference, San Jose, CA, March-2015 39

 client pid size
--
client:drm pid:1 size:79822848
--
total orphaned 0
total 79826944
deferred free 0
--
0 order 8 highmem pages in pool = 0 total
0 order 8 lowmem pages in pool = 0 total
0 order 4 highmem pages in pool = 0 total
0 order 4 lowmem pages in pool = 0 total
0 order 0 highmem pages in pool = 0 total
0 order 0 lowmem pages in pool = 0 total

 client pid size
--
client:drm pid:1 size:31883264
--
total orphaned 0
total 31883264
deferred free 0
--
0 order 8 highmem pages in pool = 0 total
9 order 8 lowmem pages in pool = 9437184 total
0 order 4 highmem pages in pool = 0 total
463 order 4 lowmem pages in pool = 30343168 total
0 order 0 highmem pages in pool = 0 total
117 order 0 lowmem pages in pool = 479232 total

BEFORE: AFTER:

ION System Heap Results:

 No memory left in ION page pool.
 For every allocation request, system is

bound to take slow-path.
 Application performance tends to degrade

from this point.

 Lots of order {8, 4, 0} pages were recovered.

 Performance is degraded only once, during
recovery, but later it improves and stays for long
time.

Embedded Linux Conference, San Jose, CA, March-2015 40

Kernel: [495.009158] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 26484
Kernel: [495.752874] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 12890
Kernel: [495.806645] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 1862
Kernel: [495.826925] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 669
Kernel: [495.838600] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 142
Kernel: [495.847219] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 122
Kernel: [495.853767] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 65
Kernel: [495.859387] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 82
Kernel: [495.865089] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 102
Kernel: [495.868730] [1: Xorg: 331] [c1] [PINTU]: shrink_all_memory: nr_reclaimed: 47
Kernel: [495.868757] [1: Xorg: 331] [c1] [PINTU]: Order:4, Total pages shrinked: 42465

Logs output during ION system heap allocation:

 Earlier, during ION system heap allocation, for every order-4 allocation, it fallback to
order-0 allocation. Thus application performance will be degraded.

 With shrink memory during order-4 allocation failure, the fallback will happen only
once. The next order-4 allocations will pass.

 Chances are that even order-8 allocation may pass, which will never happen in earlier
case. Thus application launch performance can be increased and OOM can be delayed.

Embedded Linux Conference, San Jose, CA, March-2015 41

BEFORE:

Zone: Normal
Order Fragmentation[%]

0 0.00%

1 12.10%

2 25.10%

3 89.50%

4 100.00%
5 100.00%

6 100.00%
7 100.00%
8 100.00%

9 100.00%

10 100.00%

Overall 75.15%

Zone: Normal
Order Fragmentation[%]

0 0.00%
1 0.80%
2 1.60%

3 20.50%

4 54.00%

5 76.50%
6 86.30%

7 89.10%
8 89.80%

9 95.30%
10 96.80%

Overall 55.52%

AFTER:

Memory Fragmentation Results:

 After many application launch fragmentation level becomes: 75.15%

 With ION memory shrinker, fragmentation level decreases to: 55.52%

Embedded Linux Conference, San Jose, CA, March-2015 42

SUMMARY

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

X1 = 50MB

Initial Free Memory = 50MB, Reclaimable memory = 150MB

A11

X2 = 5MB

SLOW PATH

A12

X2 = 5MB

SLOW PATH

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

X1 = 50MB
Run Memory

Shrinker

A11 A12 A13 A14 …

Existing Approach:

New Approach:

NO SLOW PATH

Embedded Linux Conference, San Jose, CA, March-2015 43

CONCLUSION
 It can be developed as a system tool and invoked from user or kernel space.

 It can help in restoring the memory accumulated during initial boot-up, which
may not be useful later.

 It can also help in finding out how much of the total memory can actually be
reclaimed for each orders.

 It can help in allowing new application to launch without killing existing
applications.

 This technique is already used in hibernation. Similarly for mobiles it can be
used during system suspend.

 Similar technique is also used in memory cgroups in the name of force_reclaim
and force_empty.

 It is more effective after heavy file transfer which make the system heavily
fragmented. The caches accumulated here can be reclaimed.

 Memory shrinker patches and utilities developed here will be soon shared in
the mainline for further review and improvements.

Thank You!

Embedded Linux Conference, San Jose, CA, March-2015 44

Questions??????

