Runtime Power Management

Kevin Hilman

Deep Root Systems, LLC

khilman@deeprootsystems.com



Runtime PM - Intro

New PM framework
Independent PM of devices at runtime

Idle devices can suspend

Merged in 2.6.32
Author: Ratael Wysocki .

But first...

Deep Root Systems, LLC



System PM - Crash Course

Traditional suspend/resume
System-wide

All devices together
Initiated by userspace

Any device can prevent system
suspend

Deep Root Systems, LLC



struct dev_pm_ops

= EXists in struct device_driver, struct bus_type,

struct dev_pm_ops { o -

o § e
-

int (*prepare) (struct device *dev); —— ,“ng-
vold (*complete) (struct device *dev);
int (*suspend) (struct device *dev);

int (*resume) (struct device *dev);

int (*suspend_noirq) (struct device *dev);

int (*resume_noirq) (struct device *dev);

}i

= All hooks are optional

D

Deep Root Systems, LLC



echo mem > /sys/power/state

suspend_ops—>begin () (each step iterated for every device — bus, type, class)
= Prepare: ->pm->prepare ()
= Early suspend: ->pm->suspend ()

suspend_ops—>prepare ()

= Late suspend: ->pm->suspend_noirqg()
suspend—>ops—>enter ()

suspend_ops—>wake ()
= Early resume: ->pm->resume_noirg()

suspend_ops—>finish ()

= [ate resume: ->pm->resume ()

. Cknnpkne: —>pm—>complete ()
suspend_ops—>end ()

9

Deep Root Systems, LLC



Runtime PM

Device-local suspend/resume

www.madeyoulaugh.com

Single device at a time

Controlled by driver

devices are independent

one device cannot prevent other
devices from PM

Dependencies? Stay tuned...

D

Deep Root Systems, LLC



struct dev_pm ops

= New members for runtime PM

struct dev_pm_ops {

int (*runtime_suspend) (struct device *dev);
int (*runtime_ resume) (struct device *dev);

int (*runtime_idle) (struct device *dev);

}i

D

Deep Root Systems, LLC



Main Runtime PM API

» pm_runtime_suspend(dev), pm_schedule_suspend (dev, delay)
= device can suspend
= subsys: —->runtime_suspend ()

* Driver: —>runtime_suspend ()

* pm_runtime_resume (dev), pm_request_resume (dev)

= subsys: —>runtime_resume ()

= Driver; —>runtime_resume ()

» pm_runtime_idle (dev), pm_request_idle (dev)
= subsys: —>runtime_idle ()
= Driver: —>runtime_idle ()

9

Deep Root Systems, LLC



Runtime PM API: _get (), _put ()

Tell PM core whether device 1s 1n use

I need the device

= pm_runtime_get (), _sync(), _noresume ()

= Increment use count, pm_runtime_resume ()

= I'm done

= pm_runtime_put (), _sync, _noidle ()

= Decrement use count, pm_runtime_idle ()

= Similar to clock framework usage

clk_enable (), clk_disable ()

9

Deep Root Systems, LLC



Drivers: simple API usage

= Probe

= pm_runtime_enable ()

= probe/configure hardware

» pm_runtime_suspend ()
= Activity

= pm_runtime_get ()

= Do work

= pm_runtime_put ()

= Done

» pm_runtime_suspend ()

3

Deep Root Systems, LLC



Driver callbacks

All are optional
—>runtime_suspend ()

= Save context
= Power down HW

—>runtime resume ()

= Power up HW

= Restore context

—>runtime 1dle ()

D

Deep Root Systems, LLC



Runtime PM for plat form_bus

Reminder: PM core — bus — driver

platform bus, common for SoC devices

plat form bus PM functions are weak

Bus code could handle common tasks instead of drivers
= Clock mgmt
= Common HW functions

= Common wakeup handling

= Check device_may_wakeup ()

9

Deep Root Systems, LLC



Customizing your platform

= Attatch platform-specific PM data to platform_device

= arch-specific, per-device data

struct platform_device {

struct pdev_archdata archdata;

}s

= What to put 1n archdata struct?

whatever you need...

Device clock

HW identifier for platform PM code

D

Deep Root Systems, LLC



Bus example: clock management

= Simple example: manage device clocks in common bus layer

= Driver does _get () and _put () instead of clock management

int platform_pm_runtime_suspend (struct device *dev)

{

struct platform device *pdev = to_platform device (dev);
struct pdev_archdata *ad = &pdev—>archdata;

struct clk *clk = ad->clk;
dev->driver—->pm->runtime_suspend (dev) ;

clk_disable (clk)

}i .
D

Deep Root Systems, LLC



OMAP: bus suspend

Overeride plat form_bus methods

Call driver method

" —>runtime_suspend ()

= driver should save context
Disable device HW

= clock(s), clockdomain

= powerdomain

Manage wakeup latencies

3

Deep Root Systems, LLC



Latency Constraints

Current latency framework 1s system-wide
« CPUidle, PM QoS: CPU_DMA_LATENCY
Also need device-specific sleep & wakeup latencies

Power state of device depends desired latency

Small wakeup latency?
= Don't fully disable HW

= Don't use deep power state

Deep Root Systems, LLC



Future Discussion

= Latency/constraints in LDM

= Device-specific latencies

= Associted with device, bus...

= Device: sleep/wakeup latencies

= Bus: throughput

3

Deep Root Systems, LLC



Summary

More granular dynamic PM

Suitied to modern SoCs w/flexible HW PM features

Can simplity drivers
= Move common driver code to bus-level

= Handle runtime and system PM with same hooks
» UNIVERSAL_DEV_PM_OPS ()

Need common latency/constraint work

Deep Root Systems, LLC



Special Thanks

Documentation/power/runtime_pm.txt
Magnus Damm

= [nitial runtime PM proposals, patches

= platform_bus, SH mobile
Paul Walmsley

= OMAP PM core dev

Texas Instruments

= funding OMAP kernel work

Image credits, links

http://scienceblogs.com/tetrapodzoology/2008/09/natural_history_of sleep.php

http://izismile.com/2009/01/13/funny_sleeping_animals_17_photosthtm

y ¢

http://www.bear.org/

Deep Root Systems, LLC


http://izismile.com/2009/01/13/funny_sleeping_animals_17_photos.htm

