
WiFi and Secure Socket Offload
in ZephyrTM

Gil Pitney / Texas Instruments
gpitney@ti.com

● The TI SimpleLink CC32xx family of MCUs provides an SoC and supporting
SDK which completely offloads the WiFi stack onto an integrated network
coprocessor (NWP).

○ This provides significant memory, CPU, and energy savings.
○ All secure communications, certificate/key storage, crypto and power management is handled

on the NWP.
○ The SimpleLink SDK supports TI RTOS and FreeRTOS, but is designed to be portable.

● Zephyr networking stack has support for WiFi via an offload tap (data plane),
and some wifi management events (control plane).

● Zephyr has recently added TLS support into the BSD Socket API
○ This meshes well with TI’s SimpleLink design

● The goal is to efficiently integrate the SimpleLink offloaded capabilities
into Zephyr, while leveraging Zephyr socket-based networking protocols.

○ All work was done on the CC3220SF-LaunchXL development board.

Motivation

TI CC3220SF SoC H/W Architecture

TI SimpleLink CC32xx SDK Architecture & APIs
● Device API: Manages hardware-related functionality such

as start, stop, set, and get device configurations.

● WLAN API: Manages WLAN, 802.11 protocol-related
functionality such as device mode (station, AP, or P2P),
provisioning method, connection profiles, and connection
policy.

● BSD Socket API: with TLS handled under the BSD API.
● NetApp API: Offloads networking services (HTTP, DHCP,

mDNS).

● NetCfg API: Configures network parameters (MAC
address, acquiring IP address by DHCP, setting the static
IP address).

● Serial Flash API: for networking or user proprietary data.

Sources: swru368, swru369c

http://www.ti.com/lit/swru368
http://www.ti.com/lit/swru369

net_mgmt

Ethernet MAC
(NXP, Atmel, ST,

SLIP/TAP)

Zephyr Network Stack (Previous State)
● Plan has been to support

WiFi via offload chips.
○ data via NET_OFFLOAD tap.
○ No WiFi L2 Drivers
○ No WiFi supplicant, or

provisioning support (yet).

● Secure comms (SSL/TLS)
provided by mbedTLS librarynet_context #ifdef CONFIG_NET_OFFLOAD

Network Interface
L2 Interface

TCP/IP Offload
Engine

(SoC Coprocessor or
WiFi chip)

net_app
(client/server/TLS wrappers)

802.15.4 MAC
(TI, NXP,Nordic)

BlueTooth
L2CAP
(Nordic)

BSD sockets
(zsock)

uPy modsocket
& Zephyr
samples

Zephyr Network Protocols
(WebSock, MQTT, LwM2M/CoAP, DNS

HTTP, SNTP)

Zephyr Native IP Stack
(Core, IPv4/IPv6, ICMPv4/ICMPv6, UDP/TCP)

mbedTLS
library

Option 2: Write an L2 Driver:
● How:

○ Use SimpleLink Raw Sockets
■ aka “Transceiver Mode”.

○ Implement L2 send(), reserve() fxns.
○ Push received data via net_pkt to

Zephyr IP core.

● Pros:
○ Hooks deeply into the Zephyr IP Core.
○ Enables Zephyr use cases like packet

routing across network interfaces.

● Cons:
○ Does not fully leverage SimpleLink:

■ network buffer allocation, management

■ DHCP, DNS offloaded

■ Secure socket offloading

Option 1: Use SimpleLink SDK APIs:
● How:

○ SDK already ported to Zephyr
○ #include <SL_SDK>/simplelink.h

○ #include <SL_SDK>/sys/socket.h

● Pros:
○ Zephyr apps get full access to

SimpleLink WLAN, NetApp, Socket
APIs.

○ Can still use Zephyr drivers: I2C, GPIO..
○ Offers fullest H/W entitlement.

● Cons:
○ No integration with Zephyr WiFi event

management.
○ Will not leverage Zephyr’s

socket-based network protocols.

Options for TCP/IP Offload to the NWP (1/2)

Option 4: Offload at BSD socket layer:
● How:

○ Enable CONFIG_NET_SOCKETS_OFFLOAD
○ Write a Zephyr WiFi driver (cntrl only)
○ Register offloaded socket fxns w/ Zephyr.

● Pros:
○ Avoids overheads of option 3)
○ Secure socket communications get fully

offloaded.
○ DNS offloaded too (getaddrinfo())

● Cons:
○ Currently, only one socket provider in the

system
○ No packet routing across net interfaces.

Option 3: Offload at net_context():
● How:

○ Enable CONFIG_NET_OFFLOAD
○ Write a Zephyr WiFi driver (cntrl + data)

● Pros:
○ TCP/IP stack is offloaded to the NWP.
○ Enables Zephyr use cases like packet

routing across network interfaces.

● Cons:
○ Overheads:

■ Mapping sync BSD socket APIs to
async net_context APIs and back.

■ Received data copied into net_bufs
and queued.

■ Driver thread to select sockets and
trigger callbacks

○ Security: TLS handshake and crypto
are not offloaded

Options for TCP/IP Offload to the NWP (2/2)

This Option Chosen for TI SimpleLink

net_mgmt

● TLS handled under socket APIs
● New offload tap at BSD socket layer
● WiFi offload drivers implement:

○ iface_init: NWP init, defaults
WLAN & network params.

○ Control: scan(), [dis]connect(),
and callbacks to wifi_mgmt

○ Data: net_context() or sockets.
● Protocols being migrated from

net_app/net_context to BSD
socket API.

Zephyr Network Stack (New State)

net_context
#ifdef CONFIG_NET_OFFLOAD

mbedTLS
library

Zephyr Native IP Stack

L2 Interface
Drivers

BSD sockets
 & TLS setsockopt()

TI SimpleLink
WiFi Driver /

Socket Provider

#ifdef CONFIG_NET_SOCKETS_OFFLOAD

Atmel
Winc1500
WiFi driver

es-WiFi,
ESP8266

WiFi drivers
(PRs)

Zephyr Network Protocols
(MQTT, LwM2M,...)

wifi_mgmt zsock

● Why?
○ TLS is hard to get right; many TLS library APIs and configuration options.
○ Let’s make it easy to add TLS to non-secure socket-based networking apps/protocols.

● Adding TLS to a networking app via mbedTLS involves:
○ Creation/initialization of mbedtls ssl, config contexts, registration of entropy generator.
○ Setup certificates list.
○ Configuration of the TLS/SSL layer.

■ Set server/clilent mode

■ Set certificate authentication mode

■ Specify RNG and DBG functions

■ Set network tx/rx functions via mbedtls_ssl_set_bio()

○ Socket creation (standard POSIX); then connection via mbedtls_net_connect()
○ Read/Write via mbedtls_ssl_read()/mbedtls_ssl_write()
○ Teardown of mbedtls contexts.

● Zephyr wrapped all this with net_app, but we want to leverage standard APIs...

Zephyr: Adding TLS to Socket APIs

What’s involved in establishing a secure channel?

Store Certificates/keys:
● Certificates/private keys provisioned

into secure flash.
● Catalog of known Trusted Root CA

Certificates

“TLS Handshake”: connect()
● Cipher suite negotiation
● Authentication of the server and

(optionally) the client
● Session key exchanged.

Data Exchange: send()/recv()
● Session key used to encrypt data on

this channel.

www.it.com/lit/swpu332: Fig. 3

http://www.it.com/lit/swpu332

● The secrets should be kept secure from non-secure apps; eg,
○ On TI CC3220SF:

■ NWP runs the TCP/IP stack and crypto in a separate CPU (address space) from the MCU (running
Zephyr). NWP has full access to the keys.

■ MCU can write new secrets (eg: via OTA updates). Secrets are signed, encrypted and have R/W access
control levels.

○ On an ARMv8-M Device with Trusted Execution Environment:
■ Secrets can be stored in a secure memory partition, accessed by secure code.

■ (See talk by Andy Gross on Tuesday: “Zephyr and Trusted Execution Environments”)

● Storing secrets:
○ Method 1: Write a separate provisioning app to store certs/keys into secure flash filesystem.
○ Method 2: Use vendor production line tool to provision certs/keys to the device’s secure flash.

How to provision the certificates/keys to the device?

/* Ideally, a separate application to store certs/keys into a secure file system: */

#if defined(CONFIG_TLS_CREDENTIALS)

#include <net/tls_credentials.h>

#define CA_CERTIFICATE_TAG 1
/* GlobalSign Root CA - R2 for https://google.com */
static const unsigned char ca_certificate[] = {

#include "globalsign_r2.der.inc"
};

/* Ideally, add credentials to secure flash: */

tls_credential_add(CA_CERTIFICATE_TAG, TLS_CREDENTIAL_CA_CERTIFICATE,
 ca_certificate, sizeof(ca_certificate));

#endif

Method 1: Zephyr’s tls_credential_add() API

Currently, credentials only saved in RAM,
and done as part of network app/protocol
initialization.

APIs enabled by a Kconfig variable.

TI UniFlash Tool:
● Enable TI catalog of Trusted CA

Root Certificates
● Eg: Add google’s “GlobalSign

R2” DER file to secure flash.

At runtime:
● bind certificate’s filename via

its sec_tag_t to client socket
using setsockopt()

Method 2: Provisioning Certs/Keys on CC3220SF

#include <net/tls_credentials.h>

#define CA_CERTIFICATE_TAG 1

#if defined(CONFIG_NET_SOCKETS_SECURE_OFFLOAD)
/* GlobalSign Root CA - R2 for https://google.com */
static const unsigned char ca_certificate[] = “globalsign_r2.der”

#else

/* Use Method 1: encoding full certificate: */

#endif

/* For method 2: Only the certificate’s filename is associated with the tag: */

tls_credential_add(CA_CERTIFICATE_TAG, TLS_CREDENTIAL_CA_CERTIFICATE,
 ca_certificate, sizeof(ca_certificate));

Method 2: at init time, only need provide filenames

So, now we have this “certificate tag” associated with a certificate or key, how to use it?

TBD: KConfig name may change before
Zephyr LTS

#include <net/socket.h>

#if defined(CONFIG_TLS_CREDENTIALS)

#include <net/tls_credentials.h>
#define HTTP_PORT "443"
#else
#define HTTP_PORT "80"
#endif

#define HTTP_HOST “google.com”

#define REQUEST "GET / HTTP/1.0\r\nHost: " HTTP_HOST "\r\n\r\n"

main() {

static char response[1024];

static struct addrinfo hints;
struct addrinfo *res;
int sock;

hints.ai_family = AF_INET;

hints.ai_socktype = SOCK_STREAM;
getaddrinfo(HTTP_HOST, HTTP_PORT, &hints, &res);

http_get: Retrieve google web page over https (1/2)

For HTTPS, using port 443

#if defined(CONFIG_TLS_CREDENTIALS)
sock = socket(res->ai_family, res->ai_socktype, IPPROTO_TLS_1_2);
sec_tag_t sec_tag_opt[] = {

CA_CERTIFICATE_TAG,
};
setsockopt(sock, SOL_TLS, TLS_SEC_TAG_LIST, sec_tag_opt, sizeof(sec_tag_opt));
setsockopt(sock, SOL_TLS, TLS_HOSTNAME, HTTP_HOST, sizeof(HTTP_HOST));

#else
sock = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

#endif

/* Rest of network app/protocol code remains unchanged: */

connect(sock, res->ai_addr, res->ai_addrlen);
send(sock, REQUEST, sizeof(REQUEST)-1, 0);

do {
len = recv(sock, response, sizeof(response) - 1, 0);

response[len] = 0; printf("%s", response);

}

close(sock);

}

Idea: Encapsulate TLS under POSIX Socket API (2/2)

connect() handles the TLS
handshake

send()/recv() now done
over secure channel

TLS Security added with a few lines of setsockopt() code.
With TI SimpleLink, all secure comms offloaded.

TLS protocol family

Certificate bound to socket via tag

Summary
● The TI SimpleLink CC3220SF SoC allows the TCP/IP stack, WiFi, secure

communications, encryption, secrets storage and power management to be
offloaded from the MCU (Zephyr) to an integrated network coprocessor (NWP).

How?
● The SimpleLink NWP “host driver” is ported to Zephyr via a thin OSAL.
● The SimpleLink Zephyr WiFi driver implements the WiFi control API, and sends

[dis]connect/scan notifications back to the network event manager.
● Certificates are provisioned to CC3220SF secure flash via TI UniFlash tool.
● The SimpleLink Zephyr WiFi driver registers it BSD socket APIs to the new

Zephyr socket layer, and
● with the help of Zephyr’s new TLS socket APIs, we can achieve full secure

socket offload, available to Zephyr’s socket-based net protocols.

Thank You!

