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Types of Embedded Linux Build Systems

• Usually implies cross-build & toolchain bootstrap

• Highly customizable

• Production times explode with long package lists

• Non-zero dependencies on host for reliable 
reproducibility

“Roll your own” (OE, Yocto, buildroot, ...) Distribution-based (ELBE, OBS, Ubuntu Core...)

• Reuse standard desktop/server distribution

• Install pre-built binary packages

• Larger images & slower boots –
unless extra customization is applied

• Use distribution packages

• Rebuild from source under Yocto

• New package recipes required
(replicates poky + OE)

Hybrid approach (meta-debian)
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Requirements on Embedded Linux Build Systems

• Generate ready-to-use device firmware image

• Ensure reproducible builds

• Support for integration of business logic
as well as third-party components

• Enable product-line development:
reusable components & configurations

• Easy for beginners,
yet powerful for advanced

General needs Our additional requirements

• Avoid building from source where possible

• Integrate binary packages

• Do not invalidate upstream QA

• Access to large package pool
for increasingly complex systems

• Reuse well-established long-term maintenance

• Clean and well-documented package licenses
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Choosing a Base Distribution

Why Debian?

• Large community-driven ecosystem

• Popular in embedded (Raspbian, Armbian, …)

• Successfully used in several of our products

• But no standardized image builder

• Long-term support

• Strict license checks

• To ensure “free software only”

• Scales up and down
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Isar – New Project, Long History

• 2004: SLIND (Siemens Linux Distribution, Debian-
   based, cross-building) + build.sh

• 2011: SLIND + bitbake, used in Siemens products

• 2015: Debian + bitbake

• 2016: Released as Isar open source project

• Developed by ilbers GmbH

• Sponsored by Siemens Corporate Technology

• Isar?

• Integrated System for Automated Root 
filesystem generation

• River along traditional BBQ site in Munich
Copyright Usien, CC BY-SA 3.0
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Integration
via Bitbake

Yocto
Strucuture &

Workflow

Debian
Base

System 

Isar

Combining the Best of 3 Worlds
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How Isar Works (ARM Targets)
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First Steps into the Isar

Testing in QEMU

• Requires Debian on the host or in a VM

• Clone https://github.com/ilbers/isar

• . isar-init-build-env /path/build-dir

• bitbake \
  multiconfig:qemuarm:isar-image-base

• start_armhf_vm

Testing on Raspberry Pi 1

• Uses Raspbian instead of Debian

• bitbake \
  multiconfig:rpi:isar-image-base

• cd tmp/deploy/images;
dd if=isar-image-base.rpi-sdimg \
   of=/dev/mmcblk0 bs=4M

https://github.com/ilbers/isar
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Structure of Isar

Top-level view

• bitbake – Recipe interpreter
   (copy, updated from time to time)

• meta – Core layer

• meta-isar – Template layer

• scripts – Helpers scripts

• isar-init-build-env –
     Build environment setup script
     (equivalent to oe-init-build-env)

Copyright TomGonzales, CC BY-SA 2.0
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Starting an Isar Project

• Clone Isar repository

• Derive from meta-isar as template

• Add your own

• ...image

• ...packages

• ...board (machine)

• Or create separate repo with own layer,
including Isar layer in configuration (bblayers.conf)

• Configuration management via repo etc.

Basic steps

• meta-VENDOR1-bsp (U-Boot, kernel, ...)

• meta-VENDOR2-libs (codecs, ...)

• meta-COMPANY: Company-wide common bits

• meta-PRODUCT1 (app1, …)

• meta-PRODUCT2 (app2, …)

Options when organizing in layers
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Adding Your Own Image

require \
  recipes-core/images/isar-image-base.bb

IMAGE_PREINSTALL += "dropbear"

do_rootfs_append() {
  install -m 600 \
   ${THISDIR}/files/dropbear_ecdsahost_key\
   ${S}/etc/dropbear
}

• Setup

• Derive from templates
(see meta-isar/recipes-core/images)

• Extend base image

• Typical tasks

• Add Debian packages → IMAGE_PREINSTALL

• Add self-built packages → IMAGE_INSTALL

• Add files to rootfs → do_rootfs task

• Modify rootfs → …/images/files/debian-
configscript.sh

Basic steps my-image.bb
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Adding Your Own Application

DESCRIPTION = "Sample application for ISAR"

LICENSE = "gpl-2.0"
LIC_FILES_CHKSUM = \
 "file://${LAYERDIR_isar}/licenses/CO[...]"

PV = "1.0"
SRC_URI = \
 "git://github.com/ilbers/hello.git"
SRCREV = "ad7065ecc484..."

SRC_DIR = "git"

inherit dpkg

• Two options

• Build out of source via Isar

• Install pre-built Debian package from own repo

• Source-based

• Code repo must be Debianized
(debian/ folder containing metadata files)

• Build natively, using QEMU in cross setups

• Add package to IMAGE_INSTALL in local.conf
or your own image recipe

Source-based example recipeBasic steps
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Using a Custom Kernel

• Debianize your kernel tree

• Let Isar build it

• See example in custom_kernel branch
(needs fix-up for URI to work)

• Or build separately (e.g. make deb-pkg)
and pull from local repo

Kernel or app – no major differences
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Custom Kernel + Debianization

• Goal: Keep kernel tree unmodified
(e.g. pull from external source repo)

• Copy metafiles and config from recipe
into unpacked Linux tree

• Make pattern reusable via include

• Pattern may also be applied to self-built 
applications

Carry metafiles in Isar

+
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Custom Kernel Recipe – Reusable Bits

meta/recipes-kernel/
└── linux
    ├── files
    │   └── debian
    │       ├── changelog
    │       ├── compat
    │       ├── control
    │       ├── control.in
    │       ├── README.debian
    │       └── rules
    └── linux.inc

Reusable files linux.inc

DESCRIPTION = "Linux Kernel"
FILESPATH_prepend := "${THISDIR}/files:"
LICENSE = "gpl-2.0"
LIC_FILES_CHKSUM = "..."
SRC_URI += "file://debian/ \
            file://defconfig" 
SRC_DIR = "git"
inherit dpkg

do_build_prepend() {
    cp ${BUILDROOT}/defconfig \
       ${BUILDROOT}/${SRC_DIR}/arch/arm/...
       ...configs/isar_defconfig
    cp -r ${BUILDROOT}/debian \
          ${BUILDROOT}/${SRC_DIR}
}
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Custom Kernel Recipe – Specific Bits

meta-mylayer/recipes-kernel/linux/
├── files
│   └── defconfig
└── linux_4.9.bb

Self-provided files linux_4.9.bb

require recipes-kernel/linux/linux.inc

SRC_URI += "git://git.kernel.org/[...]
  .../linux-stable.git;branch=linux-4.9.y"
SRCREV = "390caeedd4fd"



Unrestricted © Siemens AG 2017

February 2017Page 18 Corporate Technology

Adding Custom Bootloader

• Debianize u-boot
→ see custom_uboot branch in Isar repo

• Or apply kernel pattern presented before

See custom_uboot branch

Copyright Käyttäjä:Mp, CC BY-SA 3.0
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How to make it bootable?

• # meta-isar/conf/machine/rpi.conf

IMAGE_TYPE = "rpi-sdimg"

• # meta-isar/classes/rpi-sdimg.bbclass

inherit ext4-img
do_rpi_sdimg () {
    # shell commands
}
addtask rpi_sdimg before do_build \
    after do_ext4_image

• Logically the same what Yocto & Co. do

• Vision: use common tools and descriptions – wic?

Image layout definition



Unrestricted © Siemens AG 2017

February 2017Page 20 Corporate Technology

Lessons Learned

• Similarities to Yocto / OpenEmbedded helps
writing recipes

• Same language

• Same structuring

• Recipes can become very simple

• Image generation out of packages is nicely fast

• Structure is simple, code complexity still low

• About 350 LOC Python and shell code

• OK, +Bitbake (46K Python code)

The good

• Needs root-privileges for image generation

• Room for improvements for recipe development

• Some recipe changes do not trigger rebuilds
as expected

• No clean-up tasks implemented yet

• QEMU-based build can be too slow
for large packages (e.g. kernels)

• Selective cross-building, at least during 
development

• ARM-based build servers can help

...and the not-yet-so-good
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What's next?

• Address findings reported earlier

• x86 support, adding reference board

• Jessie integration & fixes

• Image creation via wic

• Documentation improvements

Isar changes in the queue
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One size fits all?
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Out-of-Source Build Systems Remain Relevant

• SIMATIC IOT2000 (industrial IoT platform)

• Erratum workaround for Intel Quark in toolchain

• Many distro packages do not work

• https://github.com/siemens/meta-iot2000
(Yocto-based BSP)

• Also: systems highly optimized

• for size (package configurations)

• for performance (compiler tunings, boot times)

https://github.com/siemens/meta-iot2000
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Summary

• Isar: Promising framework for building
embedded Debian images

• Some rough edges remaining,
but none seem unfixable

• Code & recipe sharing is in the center

• ...between Isar-based images

• ...with related build system projects
   (Yocto, ELBE, meta-debian)

• Smooth path for switching between Yocto-based 
and Debian-based projects
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Resources

• Code: https://github.com/ilbers/isar/

• User manual: https://github.com/ilbers/isar/wiki/User-Manual

• Mailing lists

• Isar specifics: https://groups.google.com/d/forum/isar-users

• Collaboration topics: https://lists.debian.org/debian-embedded/

https://github.com/ilbers/isar/
https://github.com/ilbers/isar/wiki/User-Manual
https://groups.google.com/d/forum/isar-users
https://lists.debian.org/debian-embedded/
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Thank you!
Jan Kiszka <jan.kiszka@siemens.com>
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