
Unrestricted © Siemens AG 2017

First Experiences with the
Embedded Debian Build System Isar
Jan Kiszka | Embedded Linux Conference, February 21, 2017

Unrestricted © Siemens AG 2017

February 2017Page 2 Corporate Technology

Agenda

Why Yet Another Build System?

Isar Introduction

First Steps

Customizations

To-Dos & Outlook

Summary

Unrestricted © Siemens AG 2017

February 2017Page 3 Corporate Technology

Types of Embedded Linux Build Systems

• Usually implies cross-build & toolchain bootstrap

• Highly customizable

• Production times explode with long package lists

• Non-zero dependencies on host for reliable
reproducibility

“Roll your own” (OE, Yocto, buildroot, ...) Distribution-based (ELBE, OBS, Ubuntu Core...)

• Reuse standard desktop/server distribution

• Install pre-built binary packages

• Larger images & slower boots –
unless extra customization is applied

• Use distribution packages

• Rebuild from source under Yocto

• New package recipes required
(replicates poky + OE)

Hybrid approach (meta-debian)

Unrestricted © Siemens AG 2017

February 2017Page 4 Corporate Technology

Requirements on Embedded Linux Build Systems

• Generate ready-to-use device firmware image

• Ensure reproducible builds

• Support for integration of business logic
as well as third-party components

• Enable product-line development:
reusable components & configurations

• Easy for beginners,
yet powerful for advanced

General needs Our additional requirements

• Avoid building from source where possible

• Integrate binary packages

• Do not invalidate upstream QA

• Access to large package pool
for increasingly complex systems

• Reuse well-established long-term maintenance

• Clean and well-documented package licenses

Unrestricted © Siemens AG 2017

February 2017Page 5 Corporate Technology

Choosing a Base Distribution

Why Debian?

• Large community-driven ecosystem

• Popular in embedded (Raspbian, Armbian, …)

• Successfully used in several of our products

• But no standardized image builder

• Long-term support

• Strict license checks

• To ensure “free software only”

• Scales up and down

Unrestricted © Siemens AG 2017

February 2017Page 6 Corporate Technology

Isar – New Project, Long History

• 2004: SLIND (Siemens Linux Distribution, Debian-
 based, cross-building) + build.sh

• 2011: SLIND + bitbake, used in Siemens products

• 2015: Debian + bitbake

• 2016: Released as Isar open source project

• Developed by ilbers GmbH

• Sponsored by Siemens Corporate Technology

• Isar?

• Integrated System for Automated Root
filesystem generation

• River along traditional BBQ site in Munich
Copyright Usien, CC BY-SA 3.0

Unrestricted © Siemens AG 2017

February 2017Page 7 Corporate Technology

Integration
via Bitbake

Yocto
Strucuture &

Workflow

Debian
Base

System

Isar

Combining the Best of 3 Worlds

Unrestricted © Siemens AG 2017

February 2017Page 8 Corporate Technology

How Isar Works (ARM Targets)

Unrestricted © Siemens AG 2017

February 2017Page 9 Corporate Technology

First Steps into the Isar

Testing in QEMU

• Requires Debian on the host or in a VM

• Clone https://github.com/ilbers/isar

• . isar-init-build-env /path/build-dir

• bitbake \
 multiconfig:qemuarm:isar-image-base

• start_armhf_vm

Testing on Raspberry Pi 1

• Uses Raspbian instead of Debian

• bitbake \
 multiconfig:rpi:isar-image-base

• cd tmp/deploy/images;
dd if=isar-image-base.rpi-sdimg \
 of=/dev/mmcblk0 bs=4M

https://github.com/ilbers/isar

Unrestricted © Siemens AG 2017

February 2017Page 10 Corporate Technology

Structure of Isar

Top-level view

• bitbake – Recipe interpreter
 (copy, updated from time to time)

• meta – Core layer

• meta-isar – Template layer

• scripts – Helpers scripts

• isar-init-build-env –
 Build environment setup script
 (equivalent to oe-init-build-env)

Copyright TomGonzales, CC BY-SA 2.0

Unrestricted © Siemens AG 2017

February 2017Page 11 Corporate Technology

Starting an Isar Project

• Clone Isar repository

• Derive from meta-isar as template

• Add your own

• ...image

• ...packages

• ...board (machine)

• Or create separate repo with own layer,
including Isar layer in configuration (bblayers.conf)

• Configuration management via repo etc.

Basic steps

• meta-VENDOR1-bsp (U-Boot, kernel, ...)

• meta-VENDOR2-libs (codecs, ...)

• meta-COMPANY: Company-wide common bits

• meta-PRODUCT1 (app1, …)

• meta-PRODUCT2 (app2, …)

Options when organizing in layers

Unrestricted © Siemens AG 2017

February 2017Page 12 Corporate Technology

Adding Your Own Image

require \
 recipes-core/images/isar-image-base.bb

IMAGE_PREINSTALL += "dropbear"

do_rootfs_append() {
 install -m 600 \
 ${THISDIR}/files/dropbear_ecdsahost_key\
 ${S}/etc/dropbear
}

• Setup

• Derive from templates
(see meta-isar/recipes-core/images)

• Extend base image

• Typical tasks

• Add Debian packages → IMAGE_PREINSTALL

• Add self-built packages → IMAGE_INSTALL

• Add files to rootfs → do_rootfs task

• Modify rootfs → …/images/files/debian-
configscript.sh

Basic steps my-image.bb

Unrestricted © Siemens AG 2017

February 2017Page 13 Corporate Technology

Adding Your Own Application

DESCRIPTION = "Sample application for ISAR"

LICENSE = "gpl-2.0"
LIC_FILES_CHKSUM = \
 "file://${LAYERDIR_isar}/licenses/CO[...]"

PV = "1.0"
SRC_URI = \
 "git://github.com/ilbers/hello.git"
SRCREV = "ad7065ecc484..."

SRC_DIR = "git"

inherit dpkg

• Two options

• Build out of source via Isar

• Install pre-built Debian package from own repo

• Source-based

• Code repo must be Debianized
(debian/ folder containing metadata files)

• Build natively, using QEMU in cross setups

• Add package to IMAGE_INSTALL in local.conf
or your own image recipe

Source-based example recipeBasic steps

Unrestricted © Siemens AG 2017

February 2017Page 14 Corporate Technology

Using a Custom Kernel

• Debianize your kernel tree

• Let Isar build it

• See example in custom_kernel branch
(needs fix-up for URI to work)

• Or build separately (e.g. make deb-pkg)
and pull from local repo

Kernel or app – no major differences

Unrestricted © Siemens AG 2017

February 2017Page 15 Corporate Technology

Custom Kernel + Debianization

• Goal: Keep kernel tree unmodified
(e.g. pull from external source repo)

• Copy metafiles and config from recipe
into unpacked Linux tree

• Make pattern reusable via include

• Pattern may also be applied to self-built
applications

Carry metafiles in Isar

+

Unrestricted © Siemens AG 2017

February 2017Page 16 Corporate Technology

Custom Kernel Recipe – Reusable Bits

meta/recipes-kernel/
└── linux
 ├── files
 │ └── debian
 │ ├── changelog
 │ ├── compat
 │ ├── control
 │ ├── control.in
 │ ├── README.debian
 │ └── rules
 └── linux.inc

Reusable files linux.inc

DESCRIPTION = "Linux Kernel"
FILESPATH_prepend := "${THISDIR}/files:"
LICENSE = "gpl-2.0"
LIC_FILES_CHKSUM = "..."
SRC_URI += "file://debian/ \
 file://defconfig"
SRC_DIR = "git"
inherit dpkg

do_build_prepend() {
 cp ${BUILDROOT}/defconfig \
 ${BUILDROOT}/${SRC_DIR}/arch/arm/...
 ...configs/isar_defconfig
 cp -r ${BUILDROOT}/debian \
 ${BUILDROOT}/${SRC_DIR}
}

Unrestricted © Siemens AG 2017

February 2017Page 17 Corporate Technology

Custom Kernel Recipe – Specific Bits

meta-mylayer/recipes-kernel/linux/
├── files
│ └── defconfig
└── linux_4.9.bb

Self-provided files linux_4.9.bb

require recipes-kernel/linux/linux.inc

SRC_URI += "git://git.kernel.org/[...]
 .../linux-stable.git;branch=linux-4.9.y"
SRCREV = "390caeedd4fd"

Unrestricted © Siemens AG 2017

February 2017Page 18 Corporate Technology

Adding Custom Bootloader

• Debianize u-boot
→ see custom_uboot branch in Isar repo

• Or apply kernel pattern presented before

See custom_uboot branch

Copyright Käyttäjä:Mp, CC BY-SA 3.0

Unrestricted © Siemens AG 2017

February 2017Page 19 Corporate Technology

How to make it bootable?

• # meta-isar/conf/machine/rpi.conf

IMAGE_TYPE = "rpi-sdimg"

• # meta-isar/classes/rpi-sdimg.bbclass

inherit ext4-img
do_rpi_sdimg () {
 # shell commands
}
addtask rpi_sdimg before do_build \
 after do_ext4_image

• Logically the same what Yocto & Co. do

• Vision: use common tools and descriptions – wic?

Image layout definition

Unrestricted © Siemens AG 2017

February 2017Page 20 Corporate Technology

Lessons Learned

• Similarities to Yocto / OpenEmbedded helps
writing recipes

• Same language

• Same structuring

• Recipes can become very simple

• Image generation out of packages is nicely fast

• Structure is simple, code complexity still low

• About 350 LOC Python and shell code

• OK, +Bitbake (46K Python code)

The good

• Needs root-privileges for image generation

• Room for improvements for recipe development

• Some recipe changes do not trigger rebuilds
as expected

• No clean-up tasks implemented yet

• QEMU-based build can be too slow
for large packages (e.g. kernels)

• Selective cross-building, at least during
development

• ARM-based build servers can help

...and the not-yet-so-good

Unrestricted © Siemens AG 2017

February 2017Page 21 Corporate Technology

What's next?

• Address findings reported earlier

• x86 support, adding reference board

• Jessie integration & fixes

• Image creation via wic

• Documentation improvements

Isar changes in the queue

Unrestricted © Siemens AG 2017

February 2017Page 22 Corporate Technology

One size fits all?

Unrestricted © Siemens AG 2017

February 2017Page 23 Corporate Technology

Out-of-Source Build Systems Remain Relevant

• SIMATIC IOT2000 (industrial IoT platform)

• Erratum workaround for Intel Quark in toolchain

• Many distro packages do not work

• https://github.com/siemens/meta-iot2000
(Yocto-based BSP)

• Also: systems highly optimized

• for size (package configurations)

• for performance (compiler tunings, boot times)

https://github.com/siemens/meta-iot2000

Unrestricted © Siemens AG 2017

February 2017Page 24 Corporate Technology

Summary

• Isar: Promising framework for building
embedded Debian images

• Some rough edges remaining,
but none seem unfixable

• Code & recipe sharing is in the center

• ...between Isar-based images

• ...with related build system projects
 (Yocto, ELBE, meta-debian)

• Smooth path for switching between Yocto-based
and Debian-based projects

Unrestricted © Siemens AG 2017

February 2017Page 25 Corporate Technology

Resources

• Code: https://github.com/ilbers/isar/

• User manual: https://github.com/ilbers/isar/wiki/User-Manual

• Mailing lists

• Isar specifics: https://groups.google.com/d/forum/isar-users

• Collaboration topics: https://lists.debian.org/debian-embedded/

https://github.com/ilbers/isar/
https://github.com/ilbers/isar/wiki/User-Manual
https://groups.google.com/d/forum/isar-users
https://lists.debian.org/debian-embedded/

Page 26

Thank you!
Jan Kiszka <jan.kiszka@siemens.com>

	Folie 1
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

