
Inside the Linux security
module (LSM)

Vandana Salve, Prasme Systems

 #lfelc

• Software architect and co-founder of
Prasme systems, and Linux
Trainer@Linux Foundations.

• Focus: Developement of system software
for embedded devices and Linux systems

 Vandana has involved in Linux system
product development across number of
domains including Embedded and
Network server systems. She enjoys
developing and teaching Linux systems,
device drivers using the latest methods
and tools.

mailto:Trainer@Linux

 #lfelc

1 Introduction to LSM

2 Digging deeper into the
architecture

3 Integration of an LSM
into the linux kernel

4 Types of LSMs

 #lfelc

 Why Linux security module

• Security is a chronic and growing problem: as more and more systems go on line, the motivation
to attack rises and Linux is not immune to this threat:

– Linux systems do experience a large number of software vulnerabilities.
• An important way to mitigate software vulnerabilities is through effective use of access controls
• The Linux Security Modules (LSM) seeks to solve this problem by providing a general purpose
framework for security policy modules.

You will learn:
– To understand the LSM framework, its architecture and the existing LSM implementations

 #lfelc

 Introduction to Linux security module

• Lets understand what is Linux security module
– Linux security module (LSM) is the framework integrated into the kernel to provide the

necessary components to implement the Mandatory access control (MAC) modules,
without having the need to change the kernel source code every time

– Application whitelisting has been proven to be one of the most effective ways to mitigate
cyber-intrusion attacks.

– A convenient way to implement this widely recommended practice is through the “Linux
Security Modules”

 #lfelc

What is LSM?

• An LSM is a code compiled directly into the kernel that uses the LSM framework.

• The LSM framework is intended to allow security modules to lock down a system by inserting
checks whenever the kernel is about to do something interesting.

• The security modules hooks into those check points and for each operation, checks whether the
operation is allowed by the security policy currently enforced or not.

• The LSM framework can deny access to important kernel objects,
such files, inodes, task structures, credentials, and inter-process communication objects.

 #lfelc

Major and Minor LSMs

• Major
– The major LSMs are all implementations of MAC with configurable policies loaded from the

user space
– Only single LSM can be used at a time as they all assumed they had exclusive access to the

security context pointers and security identifiers embedded in protected kernel objects
– Examples: SELinux, SMACK, AppArmor and TOMOYO

• Minor
– Minor LSMs implements a particular security functionality and are stacked on top of Major

LSM and mosty need less security less context.
– The minor LSMs typically only contain flags to enable/disable options as opposed to having

policy files that are loaded from the user space as part of the system boor up.
– Examples: Yama, loadPin, SetSafeID and Lockdown

 #lfelc

Overview of LSM Framework

• The LSM framework provides a modular architecture that provides “hooks” built into the kernel
and allows security modules to be installed, reinforcing access control.

 #lfelc

Architecture of LSM

• The LSM framework allows third-party access control mechanisms to be linked into the kernel and
to modify the default DAC implementation.
• By default the framework does not provide security in itself, it provides infrastructure to support
the security modules.
• The LSM framework provides

– Additional security fields(void *) to the kernel data structures.
– Functionality to insert calls to the hook functions at critical points in the kernel code to manage

the security fields and to perform access controls.
– It also provides functions to register and un-register security modules

 #lfelc

LSM Hooks

• Security hooks helps to mediate various operations in the kernel
– These hooks invoke functions defined by the chosen modules
– These hooks construct “authorization queries” that are passed to the module
– The function calls that can be overridden by security module to manage security fields and

mediate access to kernel objects.

 #lfelc

LSM Security data fields

• LSM framework enables security modules to associate security
 information to kernel objects
• LSM extends “sensitive data types” with opaque data security fields
• The LSM security fields are simply void * pointers added in various
 kernel data structures
• They are completely managed by security modules

 #lfelc

Security data fields inside kernel objects

• For process and program, security field added to
– struct task_struct and struct linux_binrpm

• For File system, security field added to
– struct super_block

• For pipe, file and socket, security field added to
– struct inode and struct file

• For packet and network device, security field added to
– struct sk_buff and struct net_device

• For System V IPC, security field added to
– struct kern_ipc_perm and struct msg_msg

 #lfelc

Examples of security data fields

 #lfelc

LSM security data structures and hooks

• LSM data structure” struct security_hook_list”
– This data structure maintains list of pointer to the security_hook_list and store information of

LSMs added into the system.
• LSM data structure “union security_list_options”

– Union of function pointers of the security hooks defined for the LSM, which are called at
various critical paths in the kernel code.

• LSM data structure “structure security_hook_heads ”
– This data structure containing the heads of the linked list corresponding to each hook, thus

allowing them for execution in the right order, respecting the stacking property of LSM.

 #lfelc

Looking in secutiy_list_options, hooks

• In the code snippet, we can see the hooks related to the creation and
 removal of directories, file open, inode/socket creation,task alloc, IPC etc
• int (*path_mkdir)(const struct path *dir, struct dentry *dentry,
 umode_t mode);
• int (*path_rmdir)(const struct path *dir, struct dentry *dentry);
• int (*file_open)(struct file *file);
• int (*inode_create)(struct inode *dir, struct dentry *dentry,
 umode_t mode);
• int (*socket_create)(int family, int type, int protocol, int kern);
• int (*task_alloc)(struct task_struct *task, unsigned long clone_flags);
• int (*ipc_permission)(struct kern_ipc_perm *ipcp, short flag);

 #lfelc

Clarification about the LSM hooks

• Most of the hooks provided by LSM need to return an integer value (some return void)
– “0” equivalent to the authorization
– ENOMEM , No memory available
– EACCESS, Access denied by the security policy
– EPERM, Privileges are required to do this action

• Hooks provided by LSM can be 2 different types
 Object based hooks : these are related to kernel objects such C structures like inodes,
 files or sockets

– Access authorization will be based on these object attributes
• Path based : these are related to paths

 #lfelc

Clarification about security data fields/blobs

 It is the functionality provided by the LSM framework which allows for enabling special fields

located in various kernel structures and reserved for use of security modules
 Their names usually ends with “_security” suffix.
 This allows for maintaining a context between different hooks, clearing the way for higher-level

security policies
 Only major LSMs can benefit of security blobs, Minor LSMs do not use security blobs

 #lfelc

Other LSM features

• Aside from these hooks and the actions they permit, LSM framework also
 provide “Audit” functionality
• They provide alternative ways of generating log files
• LSM framework also supports the creation of pseudo-filesystems

– to easily interact with the security modules from the user space
– Loading and editing some access rules, reading some audit data or modifying the module's

configurations

 #lfelc

Integration of an LSM into the linux kernel

 Enabling the LSM in the kernel requires the following feature support
 Kernel configurations
 Makefiles
 Changes to basic code security module
 Integration with the LSM framework

 #lfelc

 LSM kernel configurations

• CONFIG_DEFAULT_SECURITY configuration needed to be selected at
 built time
• For the supported LSM, the configuration options are defined in
 “security/LSM-name/Kconfig”

 #lfelc

• Makefile is also required to get the code compiled.
• For a simple minor LSM like Yama, it can look like that:

• obj-$(CONFIG_SECURITY_YAMA) := yama.o
• yama-y := yama_lsm.o
• Just as Kconfig files, Makefiles are organized as a tree and the following lines need to be added in
the security/Makefile file:
• subdir-$(CONFIG_SECURITY_YAMA) += yama
 [...]
• obj-$(CONFIG_SECURITY_YAMA) += yama/
• These two lines integrate the security/yama directory into the kernel compilation process (if the
related Kconfig option is enabled, of course).

 LSM Makefile

 #lfelc

• The major LSM framework code is contained in security/security.c
• This LSM core does the LSM framework initialization calling security_init() which loads the
enabled supported Linux security modules in the order

– Capability module
– Minor LSMs
– Major LSM

• The security_add_hooks() will register the specified LSM, E.g Yama LSM

 LSM Code integration with the Kernel

 #lfelc

security_add_hooks()

• The arguments passed to this function are the <LSM-name>_hooks array
 and its size, obtained with the ARRAY_SIZE() macro.
• This array is an array of security_hook_list structures and is defined in
 the same file, i.e. security/yama/yama_lsm.c for Yama:
• static struct security_hook_list yama_hooks[] __lsm_ro_after_init = {
 LSM_HOOK_INIT(ptrace_access_check, yama_ptrace_access_check),
 LSM_HOOK_INIT(ptrace_traceme, yama_ptrace_traceme),
 LSM_HOOK_INIT(task_prctl, yama_task_prctl),
 LSM_HOOK_INIT(task_free, yama_task_free),
};
• These security_hook_list structures are obtained with the LSM_HOOK_INIT() macro defined in
include/linux/lsm_hooks.h.

 #lfelc

Linking of hooks for stacking LSM

• This mechanism is used for every single hook defined by every single LSM integrated to the Linux
kernel and enabled.
• The security_add_hooks() function is then expected to correctly chain all those security_hook_list
structures.
• This way, we obtain one linked list per LSM and one linked list per hook provided by the LSM
framework, depending on how we walk through those lists.
• In other word, it is these few structures, functions and macros which implement the stacking of
LSM hooks, which is itself a consequence of the stacking of the security modules that define them.

 #lfelc

Kernel calling LSM Hooks

• Kernel functions that contain LSM hooks, call the related LSM hooks wrapper functions defined in
security/security.c
• These wrapper functions, in turn calls

– call_int_hook() or
– call_void_hook()

• For instance, yama_ptrace_traceme(), which corresponds to the ptrace_traceme() kernel function
defined in kernel/ptrace.c:
static int ptrace_traceme(void)
{
 /*....*/
 ret = security_ptrace_traceme(current->parent);
 /*....*/
}

 #lfelc

Kernel calling LSM Hooks

 We see the call to security_ptrace_traceme(), defined like the following in security/security.c:
 int security_ptrace_traceme(struct task_struct *parent)
 {
 return call_int_hook(ptrace_traceme, 0, parent);
 }

 These call_int_hook() and call_void_hook() simply iterate through the linked list corresponding to
the hook,

Call's the LSM hooks defined by the security modules that are enabled on the running system:

 #lfelc

call_int_hook/call_void_hook macros

 #lfelc

• In the case of a hook returning an integer value, the iteration is interrupted as soon as one hook
function returns a value different from 0, thus satisfying the “cannot override a denial” rule.

• By providing Linux with the standard API for policy enforcement, LSM ensures to enable the
widespread deployment of security hardened systems

 #lfelc

Flow of open() system call

 #lfelc

Flow of open() system call

• The LSM framework integrated into the kernel provides each LSM with hooks on essential
functions of the kernel. The diagram above shows coarse call flow of the “open()” system call

– A process in the user space calls open() on the file path
– The system call is dispatched and the path string is used to obtain a kernel file object and

inode object.
– If the parameters are incorrect, an error is returned
– The normal “Discrete access control” (DAC) file permissions are checked. Does the current

user have the permission to open the file is checked and if not, the system call is terminated
and error is returned to user space.

 #lfelc

Flow of open() system call

5) If DACs are satisfied, the LSM framework acts for each of the file_open hooks for the
enabled LSMs. The system is terminated and error is returned to the user space if a single
LSM hook returns an error.

6) Finally, if all security checks pass, the file is opened for the process and a new file descriptor
is returned to the process in the user space.

 #lfelc

LSM file system hooks

• The VFS layer defines three primary objects which encapsulates the interface that low level file
systems are developed against

– The super_block object
– The file object
– The inode object

• Each of these objects contains a set of operations that define the interface between the VFS and
the actual file system
• This interface is a perfect place for LSM to mediate file system access.
• LSM uses the opaque security pointers defined in the kernel objects

– super_block structure
– file structure
– inode structure

 #lfelc

LSM super_block hooks

• The “super_block” structure is the kernel object representing the file system
• The structure is used while mounting and unmounting a file system or obtaining file system
statistics
• LSM provides hooks to mediate the various actions on the super_block
• When mounting a filesystem, the kernel first validates the request by calling the sb_mount()
super_block hook.
• While unmounting a filesystem, the super_block sb_umount() hook is called to check permissions
to unmount the filesystem.
• The sb_remount() hook verifies the mount options
• The sb_statfs() hook checks permissions when a task attempts to obtain the filesystem statistics

 #lfelc

LSM file hooks

• The “file” structure is the kernel object representing the open file
• It contains the “file_operation” structure which describes the operations which can be done to a
file. For example, a file can be read from, written to , seek'd through, mapped into memory and so
on.
• LSM provides a group of file hooks to mediate access to files.
• file_permission() hook can be used to re-validate read and write permissions at each file read and
write.
• file_locks() hook can be used when using locks to synchronize multiple reader or writers, a task
must pass the file_locks() hook permission before performing any locking operation on the file.
• file_ioctl/file_fcntl hooks can be used to miscellaneous file operations that come through ioctl(2)
and fcntl(2).

 #lfelc

LSM inode hooks

• The “inode” structure is the kernel object representing the kernel file objects such file, directory or
symlinks
• LSM provides a group of hooks that mediate access to the fundamental kernel structure.
• The kernel's inode cache is populated by either the file lookup operations or the file system object
creation operations
• A set of well-defined operations describes the actions taken on the inode, such as

– create(), mkdir(), rmdir(), mknod(), rename(),
– link(), unlink() , symlink(), readlink(), follow_link()
– getattr(), setattr(), getxattr(), setxattr(), permissions()

 #lfelc

LSM Task hooks

• The “task_struct” structure is the kernel object representing the kernel schedulable tasks. It
contains basic task information such as user/group ID, resource limits, and scheduling policies and
priorities
• LSM provides a group of task hooks that mediate a task's access to the basic task information
• task_alloc() hook is called to verify task can spawn children
• task_kill() hook is called when the task exits
• During the life of the task, some information may be changed such as call to setuid(2) system call,
this in turn will call task_fix_setuid() hook

 #lfelc

LSM IPC hooks
• The kernel provides the standard SysV IPC mechanins

– Shared memory, semaphores and message queues
• LSM provides set of IPC hooks that mediate access to the kernel's IPC objects
• ipc_permission() hook check the IPC permissions
• msg_queue_msgrcv() hook check permission before the message is removed from the message
queue
• shm_shmat() hook check permission before the shmat(2) to attach shared memory segment with
the given permission to the data segment of the calling process.
• sem_semctl() hook check permission when a semaphore operation specified with the given
command to be performed on the semaphore.

 #lfelc

LSM Network hooks
• As networking is an important aspect of Linux and more importantly securing the system from
network attacks, LSM provided the the extended security to this area of the kernel.
• Application layer access to networking is mediated via a series of socket-related hooks
• Additionally finer-grained hooks have been implemented for IPV4, Unix domain, netlink,
infiniteband and SCTP protocols.
• Hooks provided for all the socket system calls:

– bind(), connect(), listen(), accept(), sendmsg(), recvmsg(),
– getsockname(), getpeername(), getsockopt(), etc

• Network data traverses the network stack in packets encapsulated by sk_buff structure, LSM
provides opaque security field to the sk_buff so that security state can be managed across network
layers on the per-packet basis.

 #lfelc

LSM Module & System hooks

• The LSM framework would be incomplete if it didn't mediate loading and unloading kernel
modules
• The LSM module loading hooks add permission checks providing the creation and initialization of
loadable kernel modules
• LSM defines hooks for all security Key management operations
• LSM defines hooks for checking permission to change system time, allocating a new virtual memory
mapping, accessing kernel message ring
• LSM hooks for Audit framework
• LSM hooks for using eBPF and programs functionalities through the eBPF system calls
• LSM defines a miscellaneous set of hooks to protect the remaining security sensitive actions that
are not covered by the hooks discussed above.

 #lfelc

Current LSM status

• As of kernel version 5.7, there are 9 LSMs
– SELinux
– SMACK
– AppArmor
– TOMOYO
– Yama
– LoadPin
– SafeSetID
– Lockdown
– BPF

 #lfelc

SELINUX

• First merged as part of 2.6, Selinux is the default MAC implementation on Redhat distribution
• SELinux consists of a Linux security module and set of trusted services for administration and
secure system execution
• This SELinux mandatory protection system enables comprehensive control of all processes, so
policy writers can exactly define the required accesses

 #lfelc

SMACK

• SMACK like SELinux is an attribute based MAC implementation
• It was the second LSM development merged as part of 2.6.24 release
• SMACK was designed for embedded systems and to be simpler to administer and is the default
MAC implementation in Automotive Grade Linux and Tizen
• It enforces additional restrictions on what subjects can access which objects, based on the labels
attached to each of the subject and the object.
• SMACK uses extended attributes (xattrs) to store labels on filesystem objects and are stored in
the extended security namespace

 #lfelc

APPARMOR

• AppArmor is another MAC implementation, merged as part of 2.6.36 release and a default MAC
implementation in Debian-based systems
• AppArmor is path based implementation rather than attribute based
• Policies based on paths can protect files on any file system since
 extended attributes are not required for storing security context
 information.
• Rules can also be specified for files that may not exist yet since the path can be stored

 #lfelc

TOMOYO

• TOMOYO is, like AppArmor, another path-based MAC implementation and was first merged as
part of Linux 2.6.30.
• The technique used to enforce MAC is called domain which is determined by the process
execution history and each domain is represented by a concentration of all the previously
executed path names

 #lfelc

LoadPin

• LoadPin, merged in Linux 4.7, is a “minor” LSM
• LoadPin ensures all kernel-loaded files (modules, firmware, etc) all originate from the same
filesystem, with the expectation that such a filesystem is backed by a read-only device such as dm-
verity or CDROM.
• This is intended to simplify embedded systems that don’t need any of the kernel module signing
infrastructure / checking if the system is configured to boot from read-only devices

 #lfelc

Yama

• Yama, merged in Linux 3.4, is an LSM intended to collect system-wide DAC security restrictions
that are not handled by the core kernel.
• It currently supports reducing the scope of the ptrace() system call so that a successful attack on
one of a user’s running processes cannot use ptrace to extract sensitive information from other
processes running as the same user.

 #lfelc

SafeSetID

• SafeSetID, merged in Linux 5.1, is an LSM used to restrict UID/GID transitions from a given
UID/GID to only those approved by a system-wide whitelist.
• SafeSetID gates the setid family of syscalls to restrict UID/GID transitions from a given UID/GID to
only those approved by a system-wide whitelist.
• These restrictions also prohibit the given UIDs/GIDs from obtaining auxiliary privileges associated
with CAP_SET{U/G}ID, such as allowing a user to set up user namespace UID mappings.

 #lfelc

Lockdown

• Lockdown LSM merged in Linux 5.4, implements a “lockdown” feature for the kernel. When
lockdown is enabled, a kernel command-line parameter can be used to lockdown the kernel for
integrity or confidentiality.
• When lockdown is set to integrity, features that allow userspace to modify the kernel are disabled
such as

– Unsigned module loading, access to /dev/{mem,kmem,port},
– kexec of unsigned images, hibernation, direct PCI access,
– Raw io port access, raw MSR access, modifying ACPI tables, unsafe module parameters,

unsafe mmio, and debugfs access.
• When lockdown is set to confidentiality, along with integrity features,

– Disabling of the features that allow userland to extract potentially confidential information
from a running kernel such as /proc/kcore access,

– Use of kprobes, use of bpf to read kernel RAM, unsafe use of perf, and use of tracefs.

 #lfelc

Conclusion

• LSMs are not designed to prevent a process from being attacked.
• Good coding practices, configuration management, and memory safe languages are the tools for
that.
• The protections provided by LSMs do, however, help protect your system from being hacked
when an attacker exploits flaws in one of the running programs.
• They can be an important layer in any defense in depth strategy on Linux systems, and by
understanding what protections they provide, you hopefully have a greater appreciation for what
systems need to protect and how to implement those protections.

 #lfelc

Thank you !!

 #lfelc

 #lfelc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

