
Drew Moseley
Solutions Architect

Mender.io

Comparing embedded Linux build systems and distros

Session overview

● Review of embedded Linux
development challenges.

● Define build system and criteria.
● Discuss a few popular options.
● Give me an opportunity to learn about

some of the other tools.

Goal: Help new embedded
Linux developers get started

About me

Drew Moseley

○ 10 years in Embedded Linux/Yocto development.

○ Longer than that in general Embedded Software.

○ Project Lead and Solutions Architect.

drew.moseley@mender.io

https://twitter.com/drewmoseley

https://www.linkedin.com/in/drewmoseley/

https://twitter.com/mender_io

Mender.io

○ Over-the-air updater for Embedded Linux

○ Open source (Apache License, v2)

○ Dual A/B rootfs layout (client)

○ Remote deployment management (server)

○ Under active development

mailto:drew.moseley@mender.io
https://twitter.com/drewmoseley
https://www.linkedin.com/in/drewmoseley/
https://twitter.com/mender_io

Challenges for Embedded Linux Developers

Hardware variety

Storage Media

Software may be maintained in forks

Cross development

Initial device provisioning

Simple Makefiles don't cut it (anymore)

Facts:

● These systems are huge
● Dependency Hell is a thing
● Builds take a long time
● Builds take a lot of resources
● Embedded applications require

significant customization
● Developers need to modify

from defaults

Build System Defined

Is

● Mechanism to specify and build
○ Define hardware/BSP

components
○ Integrate user-space

applications; including custom
code

● Need reproducibility
● Must support multiple developers
● Allow for parallel processing
● (Cross) Toolchains
● License Management

Is Not

● An IDE
● A Distribution
● A deployment and provisioning

tool
● An out-of-the-box solution

“It’s not an embedded Linux distribution -- it creates a custom one for you”1

● Recipes, metadata, dependencies and configuration
● Primary output: package feed
● Secondary output: boot images
● Builds all components from source
● Mechanism, not policy

Products:

● Root filesystem image
● Kernel, Bootloader, Toolchain
● Package Feed

Yocto Project - Overview

1See more at https://www.yoctoproject.org

Organized into independent layers:

● Separation of functionality
● Allows different release schedules
● Expandability

○ Recipes developed in python and bash

SDK mechanism

● Separation of system and application devs
● Easily allows multiple developers to contribute

Optimizations:

● Faster build time reusing prebuilt binaries
● Parallel builds

Previous ELC talk estimated ~ 8400 software
packages available

Yocto Project - Details

$ git clone -b rocko \

 git://git.yoctoproject.org/poky.git

$ source poky/oe-init-build-env

$ MACHINE=qemux86 bitbake \

 core-image-minimal

$ runqemu qemux86

Yocto Project - Getting Started

Yocto Project - Summary

Pros:

● Widely supported by board and
semiconductor vendors

● Active developer community
● Wide functionality and board

support enabled by layer
mechanism

● Customizable and expandable
● Minimal native tooling required

Cons:

● Steep learning curve
● Unfamiliar environment to

non-embedded developers
● Resource-intensive

○ Long initial build times
○ Disk space

“Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux
systems through cross-compilation.”1

● Primary output: boot images
● Does not support rpm-style package mgmt
● “Firmware Generator”
● Builds all components from source
● Focus on simplicity

Products:

● Root filesystem image
● Kernel, Bootloader, Toolchain

Buildroot - Overview

1See more at https://buildroot.org/

Buildroot - Details

Uses Makefiles and Kconfig

● Widely support and well-known

Relatively small images and quick builds

BR2_EXTERNAL mechanism

● Local additions stored outside the Buildroot
source tree

● Package recipes, defconfigs, etc.

Recipes developed in kconfig and make

SDK mechanism

● Separation of system and application devs
● Easily allows multiple developers to contribute

Previous ELC talk estimated ~ 1800 software
packages available

Buildroot - Getting Started

$ git clone -b 2018.02 https://git.buildroot.net/buildroot

$ cd buildroot

$ make qemu_arm_vexpress_defconfig

$ make

$ eval $(grep qemu-system-arm board/qemu/arm-vexpress/readme.txt)

https://git.buildroot.net/buildroot

Buildroot - Summary

Pros:

● Little corporate involvement
● Quick to get started
● Easy to understand
● Active developer community
● Broad architecture and board

support

Cons:

● Little corporate involvement
● Configuration changes require

full rebuild
● No reusable shared state by

default

OpenWRT - Overview

“OpenWrt provides a fully writable filesystem with package management.”1

Primary focus is networking

○ Replacement firmware for consumer devices
○ Primarily a binary distribution
○ On-device package management

Products:

○ Firmware image in device-specific format
○ Network available package repositories

1See more at https://openwrt.org/

OpenWRT - Build System

● Consists of Makefiles and patches
● Generates a cross-toolchain and root filesystem image
● Uses kconfig
● More details here:

○ https://openwrt.org/docs/guide-developer/build-system

OpenWRT - Summary

Pros:

● Great choice as replacement
firmware

● Good choice for:
○ Router/networking device
○ If your application needs

package-based updates

Cons:

● Less flexible for general
Embedded applications

● Policy imposed by OpenWRT
design

● Package based updates can make
fleet management difficult

Desktop Distros - Overview

(or why can’t I just use <favorite-distro>?)

You can.

Sometimes.

Desktop Distros - Details

Use installer from favorite distro

Increased usage (Raspberry Pi)

Slim down to meet your needs

Generally uses prebuilt binaries

Imposes (significant?) policy

Dependent on distro vendor decisions

Likely not targeted at embedded applications

May not be cross-development friendly

Desktop Distros - Summary

Pros:

● Lots of choices to start with
● Developer familiarity
● Large selection of prebuilt

packages
● Quick getting started
● Simplicity
● On-target builds are possible

Cons:

● Policy imposed by vendor
● Difficulty in removing packages

due to dependencies
● Reproducibility is complicated
● On-target builds may be slow
● Off-target builds may be difficult

or impossible

Other Criteria

● Hardware vendor
provided material

● Training and
documentation

● Vendor for support
● Developer experience

Related Tools

uClinux (http://www.uclinux.org/)

● Port of Linux to systems without a Memory
Management Unit

● Kernel 2.6, user applications, libraries and
tool chains.

crosstool-NG (https://crosstool-ng.github.io/)

● Cross-toolchain generator
● Uses kConfig

http://www.uclinux.org/
https://crosstool-ng.github.io/

Other Build Options

ELBE (https://github.com/linutronix/elbe)
ISAR (https://github.com/ilbers/isar/)
Android ((https://source.android.com/)

...

To Be
Continued...

Summary - Use Cases

● Beginner/hobbyist/maker:
○ Commercial dev board/easy getting started
○ Desktop distro or OpenWRT

● Commercial use, single configuration
○ Fast build time/easy getting started
○ Buildroot

● Commercial use, multiple configurations
○ Modular/HW vendor support
○ Yocto Project

Summary

Yocto Project Buildroot OpenWRT Desktop Distro

Expandability

Configurability

Ease of Getting
Started

Package
Availability

Industry Support

Thank You!

Q & A
@drewmoseley

drew.moseley@mender.io

