
Effective GCC/Clang optimizations for
Embedded systems

Khem Raj

@himvis

Agenda

• Introduction
• Tools
• Compiler Optimization Switches
• Data types
• Variables and Functions
• Optimization Tips
• Summary

Tools

• Tools
– Know your compiler toolchain

• GCC based, Clang bases, Other Vendors ..
– Read through compiler has to offer

• Each one has few difference that could matter

Tools

• Understand the memory layout
– Explicit Linker scripts

• Common in bare-metal applications
– Default linker scripts

• Commonly used in hosted applications

Tools

• Linker map files (-Wl,-Map,mymap.map)
• Objdump – Disassemble Objects
• Size – Elf size dumper
• Readelf – Display Content of ELF files
• Nm – ELF symbol lister
• Strip – Remove Symbols and debug info
• More …

Optimization Options
• O<n> Switches

– O0
• -No optimizations

– O/O1
• Somewhere between -O0 and -O2

– O2
• Moderate level of optimization which enables most optimizations

– Os
• Like -O2 with extra optimizations to reduce code size

– Og
• Like -O1, better debuggability

– Oz
• Like -Os (and thus -O2), but reduces code size further.

– O3
• Like -O2, except that it enables optimizations that take longer to perform or that may generate

larger code (in an attempt to make the program run faster
– Ofast

• Like O3 with more aggressive optimization (may violate standards compliance)

Optimization Options

• GCC
– https://gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html
• Clang doesn’t have such a page

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Optimization Options

• Security
– -fstack-protector-strong
– -D_FORTIFY_SOURCE=2
– -Wformat -Wformat-security
– -Werror=format-security

Compiler Optimizations

Does Compiler support –O4 ?

Data Types

• Know processor and word-size
– Use data-types representable in processor word

size
– Smaller datatypes

• Code size increase
– Larger datatypes

• Might degrade performance
– Also depends on processing architecture

• X86 might work fine, but ARM may exhibit above or
vice-versa

Data Types

• Delegate to compiler
– C99 provides

• Fixed width – uint*_t
• Minimum width – uint_least*_t
• Fastest width – uint_fast*_t

– Portable datatypes
• uint<size>_t

Variables and Functions

• Using “const”
– is a big hint to compiler
– Immutable data
– Documentation
– Better diagnostics from compiler
– Better optimization opportunity

Variables and Functions

• Function Parameter
– Know the ABI and calling convention

• Depends on processor architecture
– ARM

• 4 registers available for parameter passing
• -mfloat-abi

– Hard
– Soft
– Softvfp

– Know alignment
• Set parameters sequence such that no padding is needed

Variables and Functions

• Avoid global and static data in loops
• Use volatile when really needed
• Avoid function calls in loops

Variables and functions

• Compiler attributes
– Clang
– https://clang.llvm.org/docs/AttributeReference.html
– GCC

• https://gcc.gnu.org/onlinedocs/gcc/Function-
Attributes.html

• https://gcc.gnu.org/onlinedocs/gcc/Variable-
Attributes.html#Variable-Attributes

https://clang.llvm.org/docs/AttributeReference.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html

Optimization Tips

• Create baselines
– Accounts for Law of diminishing returns
– Set an End goal

• You are as good as your tools
– Find good measurement tools
– Augment compilation with other tools

• Dare to Experiment
– Dig deeper into generated code

Optimization Tips

• Consider Portability
– Follow ISO C standards and demand it from

compiler (–std=c99)
– Its easy to give-up portability under stress
– Use predefined compiler preprocessor macros

• https://sourceforge.net/p/predef/wiki/Compilers/

#pragma GCC optimize (“unroll-loops”)

https://sourceforge.net/p/predef/wiki/Compilers/

Optimization Tips

• Which one is better ?

x = x ? 0:10 if (x) {
x = 0;

} else {
x = 10;

}

Optimization Tips - Stack

• Know default stack size – Its not unlimited
• Local variables e.g. Large arrays
• Take a hard look at recursive functions
• End-call optimization

int foo()
{
...

if (..)
return bar();

else
return 0;

}

Optimization Tips

• Put most likely code in hotpath
– Cascade of if-then-else
– Look for converting simple conditions to

switch-case
• Help tail recursion Elimination

– Return value of recursive call without
modifications

Optimization Tips
int factorial(int x)
{

if (x == 0) {
return 1;

} else {
return x * factorial(x - 1);

}
}

Return value is processed

int factorial(int x, int f)
{

if (x == 0) {
return f;

} else {
return factorial(x - 1, f * n);

}
}

Return value is not processed

Summary

Help the compiler and it will help you

Summary

• Compiler has to be conservative
– It wont apply an optimization if its not sure

• Pointer aliasing
– Do-while is better than for-loops

• Loop termination test can be optimized out
– Use compiler provided annotations

• Function and variable attributes
• Pragmas

– Use intrinsic where possible

Summary
• Recommendations

– Avoid “Release” and “Debug” modes
• Uniform optimization across production and development saves a

lot of time
– Know your system

• Processor architecture, bus width, DRAM, Flash, clock speeds
etc.

– Profile before optimize
– Delegate to tools as much as possible

• Don’t make them do things they can’t do well
– Avoid inline assembly
– Make portability as priority

Thank you

