
1

Real-time Communications
Framework

2

Robert McQueen, Collabora Limited
<robert.mcqueen@collabora.co.uk>

mailto:robert.mcqueen@collabora.co.uk

3

Rationale

● A new approach to real-time
communications

● Unifying IM, VOIP and collaboration
● A brief look at desktop clients...

4

The Unix Way

Do one thing and do it well

IM Client

5

The Unix Way

Do one thing and do it well

UI

two

Protocol

6

The Unix Way

Contact List

AIM

Chats

MSN XMPP

Logging

Do one thing and do it well
six

7

Do one thing and do it well

The Unix Way

Contact
List

AIM

Chats

MSN XMPP

Logging

IRCICQSIP

Avatars
File

Transfer

?

Voice
Call

twelve

8

Heading The Same Way

• Gaim users want
voice calls...

9

Heading The Same Way

• Ekiga users want
IM...

10

Heading The Same Way

• Gossip users want
more protocols...

11

This Sucks

● Massive duplication of effort
● Fragmentation of APIs
● Integration suffers badly
● Few reusable components for embedded

devices

12

The Big Idea

● Move away from the monolithic client
● Split stuff into separate processes
● Run protocols as services on the desktop
● Create a standard API for clients to use

presence, messaging, media, etc...

13

The Big Idea

D-Bus IPC

VOIP Client Chat Client Logger

SIP Backend XMPP Backend MSN Backend

14

Benefits

✔ Do one thing and do it well
✔ Re-usable components
✔ Interchangeable user interfaces
✔ Share connections between UI programs
✔ Language (and license) independence
✔ Only run what you need

15

What we're doing...

● Telepathy is a Freedesktop project
● Massively Important: well-documented

D-Bus API
● Some protocol backends
● Libraries so you can use them

16

Specification

Connection
Manager

Connection Connection

IM Channel
Media

Channel
Contact List

 Channel

17

Specification

● Connection manager objects give you
connection objects

● Connections have interfaces: presence,
aliases, avatars...

● Connections give you channel objects
● Channels have a type: IM, VOIP/video,

contact list...
● Channels have interfaces: properties,

groups...

18

Backend Implementation:
Gabble

● Jabber/XMPP backend by Collabora
● Implements IM, multi-user chat and roster

channels, presence, aliases, avatars...
● Support Google Talk and Jingle signalling

for voice and video calls

19

Backend Implementation:
Sofia-SIP

● SIP backend by Nokia and Collabora
● Based on Nokia's Sofia-SIP stack
● Support for voice/video calls and SIMPLE

messaging
● Recently open-sourced:

http://tp-sofiasip.sourceforge.net/

20

Other Backends...

● Rendezvous: Salut
● IRC: Idle
● MSN: Butterfly
● AIM/ICQ (aka Oscar): Wilde

21

Stream Engine
● Separate service to handle

voice/video/etc streams, independently
from the UI

● Signal information over a Telepathy
media channel

● Uses Google's libjingle for NAT traversal
● Uses Farsight & GStreamer 0.10 for the

RTP streams and codecs
● I'm working on a library...

22

Stream Engine

UI
XMPP

Backend

Stream
Engine

D-Bus

Contact

Signalling

RTP
Sound

23

Libraries

● libtelepathy (sorry!)
● telepathy-python
● telepathy-glib released today!

24

Tapioca Project

● Guys from Nokia Technology Institute
(INdT) in Brazil

● Similar goals to our project
● Now adopted our specification
● Producing client libraries for Qt, Glib & C#

25

Landell

● C# client based on Tapioca# and Gtk#

26

Mission Control

● Just released by Nokia, based on Glib and
Gconf

● Stores your account settings
● Manage the presence of all your

connections
● Handles incoming events
● See http://mission-

control.sourceforge.net/

27

The Knights Who Say NIH

● I already tried making a shared library of
the protocol code

● Loose coupling is essential for success
● Making a the client into a library doesn't

fix everything
● We chose not to take eg Gaim's protocol

code, but it would be cool...

28

Not Just for IM Clients

● Telepathy's API is for abstracting and
sharing the protocol code itself

● Because D-Bus objects can be extended
with interfaces, it's not a lowest common
denominator abstraction

● The actual policy and behaviour of the
client on top is not specified by the API

● So it's useful for other stuff too...

29

GNOME Integration: Gossip

Telepathy support now in 0.23 release!

30

GNOME Integration: Gossip

Voice & video support on its way...

31

GNOME Integration: Galago

● Christian Hammond's presence
framework

● Hook in to Telepathy backends
● See your contacts throughout the

desktop...

32

KDE Integration: Decibel

● “Houston” policy daemon & libraries
● Manage connection managers
● Provide account management
● APIs for common tasks
● Handle incoming events
● Based on Tapioca Qt libraries

33

KDE Integration: Kopete
● Can use Telepathy

backends
● Provide protocols

as another
Telepathy backend

● Working on Qt
libraries with
Tapioca

34

Nokia 770

● IM and VOIP on the Nokia 770 based on
Telepathy

● Uses Gabble, Stream Engine and Galago
with Nokia UI for Chat, Call & Contacts

35

Nokia N800

● Jingle video calls on XMPP using
Telepathy, a world first!

● INdT's Canola phone plugin provides
alterative UI for placing video calls

36

One Laptop Per Child

● Using Telepathy for presence &
messaging

● Video calls too!

37

One Laptop Per Child

Link-Local
XMPPXMPP

Server

Presence
Service

Activities

38

Just Released: Tubes
● Telepathy channel for exchanging data

between contact's applications
● Do the NAT punching and provide TCP,

UDP or D-Bus link-up
● Hook up e.g. Inkscape, Abiword or

Jokosher without any fragile networking
code

● Implemented on XMPP, but more coming
soon

39

Trivial Example
import dbus
import time

connect to the bus
bus = dbus.SessionBus()

get a connection manager object
gabble = bus.get_object(
 'org.freedesktop.Telepathy.ConnectionManager.gabble',
 '/org/freedesktop/Telepathy/ConnectionManager/gabble')

request a connection from it
(bus_name, object_path) = gabble.RequestConnection('jabber',
 {'account':'test1@thubuntu', 'password':'badger'},
 dbus_interface=
 'org.freedesktop.Telepathy.ConnectionManager')

get the connection object
conn = bus.get_object(bus_name, object_path)

40

Trivial Example
tell it to connect and wait a bit
conn.Connect(
 dbus_interface='org.freedesktop.Telepathy.Connection')
time.sleep(3)

request a handle for our contact
handles = conn.RequestHandles(dbus.UInt32(1),
 ['test2@thubuntu'],
 dbus_interface='org.freedesktop.Telepathy.Connection')

request a text channel with that handle
object_path = conn.RequestChannel(
 'org.freedesktop.Telepathy.Channel.Type.Text',
 dbus.UInt32(1), handles[0], False,
 dbus_interface='org.freedesktop.Telepathy.Connection')

get a channel object
channel = bus.get_object(bus_name, object_path)

41

Trivial Example
send a message
channel.Send(0, 'Hello, Santa Clara.',
 dbus_interface=
 'org.freedesktop.Telepathy.Channel.Type.Text')

disconnect
conn.Disconnect(
 dbus_interface='org.freedesktop.Telepathy.Connection')

42

Exciting Demo

● What could possibly go wrong...

43

Big up the Telepathy massive!

● Wiki: http://telepathy.freedesktop.org/
● IRC channel: irc.freenode.net #telepathy
● Mailing list:

telepathy@lists.freedesktop.org
● Development supported by Collabora Ltd:

http://www.collabora.co.uk/

http://telepathy.freedesktop.org/
mailto:telepathy@lists.freedesktop.org

