Image Signal Processor (ISP) Drivers & How to merge one upstream

Helen Koike Senior Software Engineer

About me

- @ Collabora since 2016
- Mostly working on the kernel media subsystem:
 - Maintainer of rkisp1 driver
 - Maintainer of vimc driver
- Outreachy intern in 2015 vimc projet
- Co-coordinator of Linux Kernel project in Outreachy

Main goal of this presentation

Overview of Camera→ISP→Memory pipeline

- Overview of Media Framework
- Design choices when implementing a driver
- Lessons learned when upstreaming rkisp1 driver
- Userspace tools (libcamera)

Camera→ISP→Memory

Camera sensor

Application

What is an ISP?

- Image signal processor
- Common use case:
 - ISP receives the reading all those small color sensors
 - Transforms in an image usable for userspace
- Performs several other image transformations

Image Processing

- Format conversion (debayering, RGB, YUV)
- Crop / Resize
- White balance
- Compose
- Image stabilization
- Effects / filters
- Flip / Rotate
- etc

- Hardware accelerated image processing
- Offloads the CPU

Statistics

- ISP can generate statistics:
 - Histograms
 - Area contrast
 - etc

- Used by userspace to implement algorithms such as:
 - Histogram equalization
 - 3A (auto-focus, auto-exposure, auto-white balance)

What an ISP is not

- ISP is not a codec
- ISPs work with raw/uncompressed images
- Codecs:
 - Encoders: raw image → compressed image format
 - (such as H.264, JPEG, VP9)
 - Decoders: compressed image → raw image

ISPs architecture

Inline vs Offline

Offline

- 2 phases:
 - Sensor → Memory
 - Memory → ISP → Memory
- Usually implemented in two separate drivers
 - Coordinated by userspace
 - Example Intel IPU3:
 - IPU3 CIO2 (camera interface) driver: gets the image from the sensor
 - IPU3 ImgU driver: process this image and sends to userspace

Inline

Data reaches memory only in the end:

Sensor → ISP → Memory

Example: rkisp1 driver

Hybrid

- Can get the image directly from the sensor or from memory
- Can behave as inline, or perform the second phase of offline
- Ex: MT8183 P1

MIPI DPHY (quick overview)

Bus - MIPI DPHY

 Very common bus used in the market for cameras and displays

Specified by MIPI Alliance

Physical layer with high data-rate

4k images with a good frame rate

Bus - MIPI DPHY

Up to 4 data lanes

12C bus for configuration

- On top of this bus there can be two protocols:
 - MIPI DSI-2: Display Serial Interface, to output images
 - MIPI CSI-2: Camera Serial Interface, to capture images
- MIPI DPHY/CSI-2 → frequent term in ISP land

Study case - RKISP1

Rockchip RK3399 ISP

- rkisp1 is the driver of the ISP block present in Rockchip RK3399 SoCs
- RK3399 SoC can be found in devices such as:
 - Scarlet Chromebooks
 - RockPi boards
 - Pinebook Pro laptops

Rockchip RK3399 ISP

Originally written by Rockchip

Merged in kernel 5.6

drivers/staging/

9k+ lines of code

Rkisp1 hw architecture

Rkisp1 hw architecture

- ISP Comprises with:
 - Image Signal Processing
 - Many Image Enhancement Blocks
 - Crop
 - Resizer
 - RBG display ready image
 - Image Rotation

- Self-path: preview
- Main-path: picture

Kernel media framework

Media topology

 Linux kernel exposes a topology to userspace

Userspace can query /dev/mediaX

Retrieve how inner blocks are interconnected

Order of image processing

Media topology

- Two types of nodes:
 - subdevices: inner parts of the hardware
 - video devices: dma engine, where userspace queues and dequeues buffers, containing images or metadata to/from the hardware
- Connected by links between pads

NOTE: sensor is usually a separated driver

IPU3 CIO2 – offline – 1st phase

IPU3 ImgU – offline – 2nd phase

RKISP1 - inline

Driver config architecture

Auto vs Manual config propagation

Auto config propagation

Manual config propagation

Manual config propagation

Increases complexity for userspace

• If formats don't match → fail on STREAMON

 Finer grain configuration in inner blocks of the hardware

More blocks exposed, more complex

Extendable

Why rkisp1 is manual?

Crop

Specify a sub-rectangle in the image

Crop - rkisp1

Crop - rkisp1

rkisp1 allows cropping the image from the sensor

rkisp1 allows cropping the image before resizing

 Exposing crop once in the video node would be confusing

Crop - rkisp1

lmage stabilizer

• "Lock" sub-rectangle in the picture

 Shaking the phone won't shake the image much

Setting sub-rectangles

Phy subsystem

Rkisp1 - original topology

Phy Abstraction Layer

- Manual config propagation → more subdevices, more complex for userspace
- Re-think exposed blocks
- Phy block → no image configuration exposed
- Topology → image processing steps
- Same processing steps can be used on top of different buses
 - ex. rkisp1: parallel (not implemented), MIPI-DPHY/CSI2

Phy - Lessons learned

Lessons learned:

Migrate bus code to PHY Abstraction Layer (drivers/phy/)

Generic topology for any bus – less complex for userspace

ISP driver is much cleaner

Phy driver can be used for DSI

Lessons learned

Updating to staging

- V4L2 community is open to accept drivers in staging
- (with the condition that you work on it to move it out asap)
- Detailed TODO list
- Make it available to other people to use
- Improve workflow, easier to get contributions from others, testing, bug reports
- Decrease maintenance cost → no need to keep rebasing

More lessons learned

- Don't be afraid to re-organize the code (files, namings, code order, re-writing functions)
- Split the code between different files per implementation node, at least between video nodes and subdevice nodes
- Separate the code that configures the hardware, from the code that deals with the V4L2 API
- Remove code you are not using, you that you can't test, for example:
 - rk3288 support
 - phy driver ports (SoC has 2 MIPI-DPHY/CSI2 ports, I had was only using one)
 - Simplify the code but keep extendable
 - Lots of macros in headers

Userspace support

Libcamera

Complex topologies

- Not all features are auto discoverable
- Examples (rkisp1):
 - sub-rectangle for cropping
 - vs sub-rectangle for image stabilizer
 - Meta-data buffers structure:
 - rkisp1_stats
 - rkisp1_params

Complex topologies

 Requires userspace specific implementation for specific drivers

Specific applications to specific hardware

Not very reusable code

• Hard to test

Libcamera

 Open source camera stack for many platforms with a core userspace library

Userspace drivers

Image processing algorithms


~~~ Sandboxing

### Tips

 Add/push/update support for your hardware in Libcamera

Easier to test

More users

More developers involved

Contribute with the project

### Thank you

```
Message {
  config {
    priority: "high"
    body: "Collabora is hiring" // Many open positions
    recipient: "you" // Please join us
    calltoaction: "http://col.la/join"
  }
}
```

Helen Koike helen.koike@collabora.com