
The Serial Device Bus

Johan Hovold

Hovold Consulting AB

Embedded Linux Conference Europe
October 23, 2017

Introduction

• UARTs and RS-232 have been around since 1960s

• Common interface for Bluetooth, NFC, FM Radio and GPS devices

• TTY layer abstracts serial connection
• Character-device interface (e.g. /dev/ttyS1)

• But no (good) way to model associated resources (e.g. for PM)
• GPIOs and interrupts
• Regulators
• Clocks
• Audio interface

• Kernel support limited to line-discipline ”drivers”
• Must be configured and initialised by user space

Outline

• TTY Layer

• User-space drivers

• Line-discipline drivers

• Serdev implementation

• Serdev driver interface

• Limitations

• Future work

TTY Layer

• Character device

• Line disciplines
• I/O processing
• Canonical mode
• Echoing
• Errors
• Signals on input

• TTY ports
• Input buffering
• Abstraction layer (e.g. open())

• TTY drivers
• struct tty operations

User-Space Drivers

• Using default n tty line discipline

• Description in user space
• Port
• Line speed

• Associated resources?
• GPIOs and interrupts (accessible)
• Regulators (N/A)
• Clocks (N/A)

• Custom power management
• System-suspend notifications
• Wakeup interrupts

• Custom firmware management

Line-Discipline Drivers

• Interaction with other subsystems
(e.g. bluetooth, input, nfc, ppp)

• Ldisc registers further class devices

• Registered while port (ldisc) is open

• User-space daemon to initialise port
and switch line discipline

• ldattach
• inputattach
• hciattach (btattach)

• Firmware infrastructure available

• But still issues with other resources
and PM

Bluetooth Example

int ldisc = N_HCI;

int proto = HCI_UART_BCM;

fd = open("/dev/ttyO1", ...);

/* configure line settings */

ioctl(fd, TIOCSETD , &ldisc);

ioctl(fd, HCIUARTSETPROTO , proto);

Bluetooth Example

Bluetooth Example

Problems with Line-Discipline Drivers

• Description (what, where, how?) and discovery
• Encoded in user space rather than firmware (DT, ACPI)
• User-space daemons

• Description and lookup of associated resources
• GPIOs and interrupts (e.g. reset, wakeup)
• Pinctrl
• Regulators
• Clocks

• Power management
• GPIOs, regulators, clocks...
• Open port may prevent underlying device from runtime suspending

• Firmware loading
• GPIO (e.g. reset) interaction

The Serial Device Bus

• The Serial Device Bus (Serdev)

• By Rob Herring (Linaro)

• Bus for UART-attached devices
• Replace ti-st driver and UIM daemon
• Earlier efforts (power management)

• Merged in 4.11

• Enabled for serial core only in 4.12 (due to lifetime issues)

Serdev Overview

• New bus type: serial

• Serdev controllers

• Serdev devices (a.k.a. clients or slaves)

• Serdev TTY-port controller
• Only in-kernel controller implementation
• Sometimes (incorrectly) identified with Serdev
• Registered by TTY driver when clients defined
• Controller replaces TTY character device

• Clients described by firmware (Device Tree or soon ACPI)

Serdev Drivers

Serdev Drivers

TTY-Port Controller Implementation

struct device *tty_port_register_device_serdev (...);

struct tty_port_client_operations {

int (* receive_buf)(...);

void (* write_wakeup)(...);

};

struct tty_port {

...

struct tty_port_client_operations *client_ops;

void *client_data;

};

• Registers controller and slaves instead of TTY class device

• Replaces default TTY-port client operations

• Controller interface implemented using TTY layer and TTY-driver ops

Device Tree Bindings

• Child of serial-port node

• compatible property

• max-speed property (optional)

• Additional resources

&uart1 {

bluetooth {

compatible = "ti,wl1835 -st";

enable -gpios = <&gpio1 7 0>;

clocks = <&clk32k_wl18xx >;

clock -names = "ext_clock";

};

};

Sysfs Example

/sys/bus/platform/devices/

|

|-- 44 e09000.serial

| |-- driver -> .../ omap_uart

| ‘-- tty

| ‘-- ttyO0

|

‘-- 48022000. serial

|-- driver -> .../ omap_uart

‘-- serial0

‘-- serial0 -0

|--bluetooth

| ‘-- hci0

|-- driver -> .../hci -ti

‘-- subsystem -> .../ bus/serial

Driver Interface

• Resembles line-discipline operations
• Open and close
• Terminal settings
• Write
• Modem control
• Read (callback)
• Write wakeup (callback)

• A few additional helpers

Driver Interface Functions

int serdev_device_open(struct serdev_device *);

void serdev_device_close (...);

unsigned serdev_device_set_baudrate (...);

void serdev_device_set_flow_control (...);

int serdev_device_write_buf (...);

void serdev_device_wait_until_sent (...);

void serdev_device_write_flush (...);

int serdev_device_write_room (...);

int serdev_device_get_tiocm (...);

int serdev_device_set_tiocm (...);

• No write serialisation (should not be a problem)

• No operation ordering enforced (by core)

• All but write buf() and write room() may sleep

Driver Interface Callbacks

struct serdev_device_ops {

int (* receive_buf)(struct serdev_device *,

const unsigned char *, size_t);

void (* write_wakeup)(struct serdev_device *);

};

• receive buf()

• Workqueue context
• Returns number of bytes processed

• write wakeup()

• Typically atomic context
• Must not sleep

Example Driver

static struct serdev_device_driver slave_driver = {

.driver = {

.name = "serdev -slave",

.of_match_table = of_match_ptr(slave_of_match),

.pm = &slave_pm_ops ,

},

.probe = slave_probe ,

.remove = slave_remove ,

};

module_serdev_device_driver(slave_driver);

Example Driver Probe

static struct serdev_device_ops slave_ops;

static int slave_probe(struct serdev_device *serdev)

{

...

priv ->clk = clk_get (&serdev ->dev , "clk");

priv ->serdev = serdev;

serdev_device_set_drvdata(serdev , priv);

serdev_device_set_client_ops(serdev , &slave_ops);

serdev_device_open(serdev);

serdev_device_set_baudrate(serdev , 115200);

device_add (&priv ->dev);

return 0;

}

Limitations

• Serial-core only (for now)

• No hotplug support

• Single slave

• No input flow control
• No push back
• Data silently dropped if client can’t keep up

• No input processing (cf. raw terminal mode)
• No software flow control (XON/XOFF)
• No parity, framing, or overrun errors
• No break signalling

Serial Port Hotplugging

• Implemented using TTY hangups and file operations

• But Serdev does not use file abstraction

• Requires changes to TTY layer

• Partial reason for initial revert

• PCI hotplug...

• Description of dynamic buses
• Only USB has rudimentary support for Device Tree
• Device Tree Overlays?
• No in-kernel user-space interface for overlays
• Pass overlays (compatible strings) from TTY drivers?

• Example
• Pulse Eight HDMI CEC USB device (ACM, serio driver)

Quirks

• Line-discipline allocated (and used)

• Controller always registered

• No character device (feature)

• No operation ordering

• No controller runtime PM (client-device status not propagated)

• Code duplication and backwards compatibility

• Some naming inconsistencies
• serial bus (not serdev)
• serdev device/client/slave

Kconfig Notice

Device drivers --->

Character devices --->

<*> Serial device bus --->

<*> Serial device TTY port controller

• SERIAL DEV BUS [=y]

• Tristate
• Driver dependency

• SERIAL DEV CTRL TTYPORT [=y]

• Boolean
• Only in-kernel controller implementation
• Should default to y (patch posted)
• Depends on TTY and SERIAL DEV BUS != m

Merged Drivers

• Bluetooth
• hci serdev (library based on hci ldisc.c)
• hci bcm (4.14)
• hci ll (4.12)
• hci nokia (4.12)

• Ethernet
• qca uart (4.13)

A Word on hci bcm

• Precursor to Serdev

• Hack for additional resources and PM

• Platform companion device
• Described by ACPI or platform code
• Child of serial device
• Manages GPIOs and clocks
• Registered in driver list at probe
• Looked up in list from HCI callbacks

• Matches on parent device

• Serdev ACPI and PM support merged for 4.15

• Regression risk

• Similar problems with hci intel

In the Works

• ACPI support merged for 4.15
• ”[PATCH v3 0/2] ACPI serdev support” (October 11)
• Potential hci bcm and hci intel breakage

• Mux support?
• ”[PATCH 0/6] serdev multiplexing support” (August 16)
• Utilising new mux subsystem
• Adds reg property (mux index)
• Has issues (no flushing, and no locking?!)
• max9260 I2C-controller slave driver
• Basic parity support (no error handling)

• RAVE slave driver
• ”[PATCH v8 0/5] ZII RAVE platform driver” (October 18)
• MFD driver for supervisory processor (watchdog, backlight, LED, etc.)

• w2sg and w2cbw GPS and WiFi/BT slave drivers
• ”[RFC 0/3] misc: new serdev based drivers for w2sg00x4 GPS module and

w2cbw003 wifi/bluetooth” (May 21)

In the Works

• ACPI support merged for 4.15
• ”[PATCH v3 0/2] ACPI serdev support” (October 11)
• Potential hci bcm and hci intel breakage

• Mux support?
• ”[PATCH 0/6] serdev multiplexing support” (August 16)
• Utilising new mux subsystem
• Adds reg property (mux index)
• Has issues (no flushing, and no locking?!)
• max9260 I2C-controller slave driver
• Basic parity support (no error handling)

• RAVE slave driver
• ”[PATCH v8 0/5] ZII RAVE platform driver” (October 18)
• MFD driver for supervisory processor (watchdog, backlight, LED, etc.)

• w2sg and w2cbw GPS and WiFi/BT slave drivers
• ”[RFC 0/3] misc: new serdev based drivers for w2sg00x4 GPS module and

w2cbw003 wifi/bluetooth” (May 21)

In the Works

• ACPI support merged for 4.15
• ”[PATCH v3 0/2] ACPI serdev support” (October 11)
• Potential hci bcm and hci intel breakage

• Mux support?
• ”[PATCH 0/6] serdev multiplexing support” (August 16)
• Utilising new mux subsystem
• Adds reg property (mux index)
• Has issues (no flushing, and no locking?!)
• max9260 I2C-controller slave driver
• Basic parity support (no error handling)

• RAVE slave driver
• ”[PATCH v8 0/5] ZII RAVE platform driver” (October 18)
• MFD driver for supervisory processor (watchdog, backlight, LED, etc.)

• w2sg and w2cbw GPS and WiFi/BT slave drivers
• ”[RFC 0/3] misc: new serdev based drivers for w2sg00x4 GPS module and

w2cbw003 wifi/bluetooth” (May 21)

In the Works

• ACPI support merged for 4.15
• ”[PATCH v3 0/2] ACPI serdev support” (October 11)
• Potential hci bcm and hci intel breakage

• Mux support?
• ”[PATCH 0/6] serdev multiplexing support” (August 16)
• Utilising new mux subsystem
• Adds reg property (mux index)
• Has issues (no flushing, and no locking?!)
• max9260 I2C-controller slave driver
• Basic parity support (no error handling)

• RAVE slave driver
• ”[PATCH v8 0/5] ZII RAVE platform driver” (October 18)
• MFD driver for supervisory processor (watchdog, backlight, LED, etc.)

• w2sg and w2cbw GPS and WiFi/BT slave drivers
• ”[RFC 0/3] misc: new serdev based drivers for w2sg00x4 GPS module and

w2cbw003 wifi/bluetooth” (May 21)

Future Work

• Address quirks and limitations, including
• Add hotplug support
• Enable for more TTY drivers (USB serial)
• Multiple slaves (mux and RS-485)?

• Further Bluetooth protocol drivers (e.g. hci intel)

• Other line-discipline drivers
• NFC
• CAN
• ti-st driver
• Some serio drivers (e.g. pulse8-cec)?

Further Reading

• include/linux/serdev.h

• drivers/tty/serdev/

• core.c
• serdev-ttyport.c

• Documentation/devicetree/bindings/

• serial/slave-device.txt
• net/broadcom-bluetooth.txt
• net/nokia-bluetooth.txt
• net/qca,qca7000.txt
• net/ti,wilink-st.txt

• ”The need for TTY slave devices” by Neil Brown
• https://lwn.net/Articles/700489/

https://lwn.net/Articles/700489/

Thanks!

johan@hovoldconsulting.com
johan@kernel.org

	The Serial Device Bus
	Introduction
	Outline
	TTY Layer
	User-Space Drivers
	Line-Discipline Drivers
	Bluetooth Example
	Problems with Line-Discipline Drivers
	The Serial Device Bus
	Serdev Overview
	Serdev Drivers
	TTY-Port Controller Implementation
	Device Tree Bindings
	Sysfs Example
	Driver Interface
	Driver Interface Functions
	Driver Interface Callbacks
	Example Driver
	Example Driver Probe
	Limitations
	Serial Port Hotplugging
	Quirks
	Kconfig Notice
	Merged Drivers
	A Word on hci_bcm
	In the Works
	Future Work
	Further Reading
	Contact Details

