References and Presentation at: http://www.elinux.org/SOC_Spies

Dave Anders aka prpplague

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - NOT Flame Fest

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - NOT Flame Fest
 - NOT representing any company or organization

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - NOT Flame Fest
 - NOT representing any company or organization
 - NOT promoting one architecture over another

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - Historical Perspective

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - Historical Perspective
 - General Pros/Cons

- Dave Anders aka prpplague
- Currently Contracted with CircuitCo
- Partners in TinCanTools
- Double-Agent Developer: ARM vs. X86
 - Historical Perspective
 - General Pros/Cons
 - Practical Considerations

Embedded in 1999

- Embedded in 1999
 - Geode
 - STPC
 - i486

- Embedded in 1999
- TCS-X1

- Embedded in 1999
- TCS-X1
- ITSY

- Embedded in 1999
- TCS-X1
- ITSY
 - Design Files
 - Linux Support
 - ARM Based

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
 - Design Files
 - Linux Support
 - ARM Based

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
 - Intel x86???

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
 - Design Files
 - Linux Support
 - IA 64-bit

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
- X86 and ARM Designs

- Embedded in 1999
- TCS-X1
- ITSY
- PandaBoard
- MinnowBoard
- MinnowBoard Max
- X86 and ARM Designs

Experiences and opinions represented here are from my personal perspective of creating open source hardware designs that first and foremost run Linux

x86 Pros

x86 Pros – Uniformity

- x86 Pros Uniformity
 - Decades spent working on uniformity

- x86 Pros Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure

- x86 Pros Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure
 - Reference Designs

- x86 Pros Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure
 - Reference Designs #exactsteps

- x86 Pros Uniformity
 - Decades spent working on uniformity
 - Component Vendor infrastructure
 - Reference Designs #exactsteps

Here is a reference design, if you use it *exactly* as given, it will work!

- x86 Pros Uniformity
- ARM Pros

- x86 Pros Uniformity
- ARM Pros Flexibility

- x86 Pros Uniformity
- ARM Pros Flexibility
 - No one enforcing compatibility

- x86 Pros Uniformity
- ARM Pros Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction

- x86 Pros Uniformity
- ARM Pros Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
 - Reference Designs

- x86 Pros Uniformity
- ARM Pros Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
 - Reference Designs #rtfm

- x86 Pros Uniformity
- ARM Pros Flexibility
 - No one enforcing compatibility
 - Open Vendor interaction
 - Reference Designs #rtfm

Here is a reference design with one example of implementation and if you change it, you better check the datasheet!

- x86 Pros Uniformity
- ARM Pros Flexibility

- x86 Pros Uniformity
- ARM Pros Flexibility

The things that provide the greatest strengths for both ARM and x86 are also their greatest weaknesses

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
 - Rigid adhearance standards

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
 - Rigid adhearance standards
 - Lack of Vendor interaction

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
 - Rigid adhearance standards
 - Lack of Vendor interaction
 - Lack of Design variations

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
 - Lack of standards enforcement

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
 - Lack of standards enforcement
 - Lack of vendor compliance

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
 - Lack of standards enforcement
 - Lack of vendor compliance
 - Lack of Design validation

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
- Pathway Forward

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
- Pathway Forward
 - x86 → embedded
 - ARM → server

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
- Pathway Forward
 - x86 → embedded relaxing standards easy
 - ARM → server

- x86 Pros Uniformity
- ARM Pros Flexibility
- x86 Cons
- ARM Cons
- Pathway Forward
 - x86 → embedded relaxing standards easy
 - ARM → server enforcing standards hard

Hardware

- Hardware
 - Component Count (Pro-Arm/Con-x86)

- Hardware
 - Component Count (Pro-Arm/Con-x86)

- Hardware
 - Component Count (Pro-Arm/Con-x86)

BeagleBone Black 18 Unique Values 131 Total Resisors

- Hardware
 - Component Count (Pro-Arm/Con-x86)

BeagleBone Black 18 Unique Values 131 Total Resisors

MinnowBoard Max 73 Unique Values 322 Total Resisors

- Hardware
 - Component Count (Pro-Arm/Con-x86)

- Hardware
 - Component Count (Pro-Arm/Con-x86)

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Use without dedicated PMIC
 - Robust fault tolerance
 - Wide component selection

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
 - Limited component selection
 - Gige PHY on MinnowBoard
 - Codec on MinnowBoard

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
 - Peripherals (Pro-x86/Con-ARM)

- Hardware
 - Component Count (Pro-Arm/Con-x86)
 - Power Supplies (Pro-x86/Con-ARM)
 - Peripherals (Pro-ARM/Con-x86)
 - Peripherals (Pro-x86/Con-ARM)
 - Too many options
 - Lack of example configurations
 - Design for least common denominator
 - USB PHY on PandaBoard

- Hardware
- Software

- Hardware
- Software
 - Cross/Native Compile

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Device Tree Overlays (Pantelis Antoniou)

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Device Tree Overlays (Pantelis Antoniou)
 - ACPI with SSDT (Rafael Wysocki)

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Device Tree Overlays (Pantelis Antoniou)
 - ACPI with SSDT (Rafael Wysocki)
 - ACPI on ARM (Graeme Gregory)

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Mainline Linux Support

- Hardware
- Software
 - Cross/Native Compile
 - PinMuxing
 - Mainline Linux Support
 - Evil Vendor Trees
 - Distribution Selection

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
- Use the Arch that makes the most sense

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
- Use the Arch that makes the most sense
- ARM and x86 have a common enemy

- Historical Perspective
- Generals Pros/Cons
- Practical Considerations
- Use the Arch that makes the most sense
- ARM and x86 have a common enemy

SYSTEMD

Questions?

http://www.elinux.org/SOC_Spies