The Project: An Open Platform

• SuperH Compatible Open Chip Platform & DSPs
 – Why these choices, and why now?

• Open Chip Designs, Open Hardware
• Open Software Platform
• Community

• Silicon, Hardware, Signal Processing, OS & Software
 – IoT Platform
Community Design & License

- OPF Certifies FPGA and ASIC. Validation Vectors.
- Professional Support from Multiple Service Providers Distributed Globally
- Liberal License Terms: BSD and Community HW License

OpenSource
J Core CPU
S Core DSP
Architecture
And RTL

Community
www.OPF.org
www.NoMMU.org
Devices

Linux
uClinux
Android

Hardware
Service
Providers

Software
Service
Providers

Community Hardware License / BSD

GNU Public License / BSD

Downloads

Contributions

Design Support
Community Design & License

- OPF Certifies FPGA and ASIC. Validation Vectors.
- Professional Support from Multiple Service Providers Distributed Globally
- Liberal License Terms: BSD and Community HW License

OpenSource
J Core CPU
S Core DSP
Architecture
And RTL

Linux
uClinux
Android

Community Hardware License / BSD

GNU Public License / BSD

Downloads

Contributions

VHDL Code Drop
Mid 2015
Use on a simple FPGA Board

Hardware Service Providers

Software Service Providers

Design Support

Design Support

www.OPF.org
www.NoMMU.org
Community Design & License

- OPF Certifies FPGA and ASIC. Validation Vectors.
- Professional Support from Multiple Service Providers Distributed Globally
- Liberal License Terms: BSD and Community HW License

Open Source J Core CPU S Core DSP Architecture And RTL

Community Hardware License / BSD

Downloads

Community
www.OPF.org www.NoMMU.org

Devices

Downloads

Linux uClinux Android

Complete Linux Stack (Connectivity)

Contributions

Design Support

Software Service Providers

Hardware Service Providers

Use on a simple FPGA Board

VHDL Code Drop Mid 2015
J Series Computation Core Cluster Roadmap

Unit: Arithmetic Operations per Second

- **2014**:
 - **J2**: 32b RISC
 - Generic IoT Devices

- **2015**: 2016
 - **J2+**: 32b RISC SMP + S-Core DSP Array
 - Signal Processing IoT
 - Next Generation Power
 - Transmission and Distribution,
 Medical,
 Infrastructure,
 Sensors

- **2017**: 2017
 - **J4**: 32b RISC SMP + SIMD Array
 - Driver Assist Subsystems in Automotive

Calendar Year

- **2014**
- **2015**
- **2016**
- **2017**
J Series Computation Core Cluster Roadmap
Unit: Arithmetic Operations per Second

- **J2**: 32b RISC
- **J2+**: 32b RISC SMP + S-Core DSP Array
- **J4**: 32b RISC SMP + SIMD Array

- **2014**: Generic IoT Devices
 - First Device: Smart Energy Instruments
 - IoT / Energy Management SoC FPGA and ASIC implementations
- **2015**: Signal Processing IoT
 - Next Generation Power Transmission and Distribution, Medical, Infrastructure Sensors
- **2016**: Driver Assist Subsystems in Automotive
- **2017**: First Device: Next Generation Power Transmission and Distribution, Medical, Infrastructure Sensors

Calendar Year
Multiprocessor data coherency

D-cache hardware-based snooping
18/36b S-Core DSP

- Development in Progress (Target Completion: June 2015)
J / S Core On-Chip Computational Clusters

- J2 : RISC (Prototype SoC in FPGA, Customer Projects)
- J2+ : RISC SMP + DSP Array (Product SoC in Progress, 152nm silicon process)
- J4 : RISC SMP + N-Dimensional SIMD Array (Under Planning)
J / S Core On-Chip Computational Clusters

- J2 : RISC (Prototype SoC in FPGA, Customer Projects)
- J2+: RISC SMP + DSP Array (Product SoC in Progress, 152nm silicon process)
- J4 : RISC SMP + N-Dimensional SIMD Array (Under Planning)

IoT devices are all about multiple Real World Signals...
Signals, Silicon, Software ... and Network
Hardware Development Environment

• Simulation & Synthesis
 – GHDL (open VHDL sim)
 – Xilinx ISE (Spartan FPGA)
 – Cadence ASIC toolflow
 – JTAG w/GDB proxy

• FPGA
 – Low Cost Dev Boards
 – System on Module
 • Multiple Vendors
 – Open FPGA Board design
 • (mid 2015)

• ASIC
 – Silicon Proven (2015)
 – Cadence flow, TSMC
 – Low Die Area
 • J2 0.45mm^2 in 0.152nm
RTL Sim->FPGA->ASIC Tool Flow

- ISP in .ods
 - CPU Generator
 - RTL Code
 - SoC Generator
 - SoC Spec .ods
 - C Headers
 - Linux OS Dev Tree
 - Tool Chains
 - Docs
 - Firmware Flow

- Processor Docs
 - Preprocess
 - Wrapper RTL
 - Synth RTL
 - FPGA Synth
 - GHDL RTL Simulator
 - Std Cell Synthesis

- ASIC Flow: Docs
- FPGA: Verification
RTL IP

• Patents:
 – All SH2 patents expired in October, 2014 (RIP)
 – SH4 patents expiring in 2016

• Copyrights:
 – New Canadian Engineers wrote initial RTL.
 – Then Original Hitachi Engineers Validated

• Trade Secret:
 – The Biggest Secret is there is no Secret.

• Contracts:
 – Don’t Apply

• Trademarks
 – This is not an SH, but J series is instruction set compatible
First Real World Device!

J2+ SoC with 16DSPs and Energy Hardware Measurement Accelerators
First Real World Device!

J2+ SoC with 16DSPs and Energy Hardware Measurement Accelerators
Application: A Measurement & Communications Core Platform for Power Grid Devices

Timing – Measurement – Computation – Communication – Control
Software

What Does Software Stack Look Like?
Standard Linux Environment

• Toolchains
 – GCC
 – BinUtils
 – ELF2FLT
 – GDB

• Kernel
 – CPU Specific Patches
 – Board Support
 • Memory, Interrupt Ctrl
 • Drivers (Serial, Eth, SD)

• Userspace
 – uClibc (Moving to MUSL)
 – Toybox + uClinux Dist
 – Initramfs (SD for Config)
Demo
J2 / S2 Evaluation Boards

- FPGA Development System
 - VHDL on ISE® Design Suite
 - Xilinx AES-S6MB-LX6-G Spartan FPGA LX9 Micro Board (LX25)
 - 62.5MHz

- CPU (~45K Gates per Core)
 - 5 Stage RISC pipeline
 - Full Harvard (separate I and D)
 - 2 Processor SMP Configuration

- DSP Array
 - 4 Operation SIMD DSP
 - P / X / Y Memories
 - e.g. 16 DSPs on a Single SoC

- Memory Subsystem
 - 16b LPDDR @200MHz: PLL off mode, low EMI
 - On Chip Boot ROM
 - 0 wait state scratch pad SRAM (64KB)

- Full chip RTL / C co-simulation
 - JTAG Co-simulation and Debug

- Off-Chip Local Bus Access
 - 8B/10B High Speed Serial LVDS Bus
 - 4 pins : 12.5 or 25MByte/sec
 - Interrupts and exceptions also on the same bus
 - Framed protocol, simple (with example)
 - Purpose: Allow test chip to be used w/FPGA
 - Prototyping with FPGA of full speed peripherals
 - Highly flexible, low technical barrier for RTL design
 - Both bus master and slave

OPF Internal Material
New Resource Sites (mid 2015)

• www.NoMMU.org
 – Development HOWTO
 • Platform information
 – Cortex-M, Armv7-j, J2, coldfire, blackfin...
 • Application development
 – Fixed stack, fork vs vfork, elf vs binflat/fdpic, memory fragmentation,
 – Toolchains and test environments
 • System development
 – Existing Linux root filesystem packages
 – QEMU coldfire emulation test platform for package dev
 – Education
 – Tutorials, mailing list
 – Upstream staging
 • Kernel, llvm, musl
 • Buildroot, openembedded
New Resource Sites (mid 2015)

- **www.0pf.org**
 - VHDL
 - Git repository with full history, under BSD license
 - J2 processor, S1 DSP, SOC with peripherals, makefiles
 - Bitstreams
 - Release binaries built from VHDL for lx9, lx25, and lx45
 - Lx9 entry level FPGA board, <$100 but only space for basic J2
 - Lx25 midrange, space for icache/dcache and ethernet
 - Lx45 space for multiple DSPs
 - Documentation
 - Toolchain install, VHDL howto, community mailing list