
Introduction to the Robot Operating System (ROS)
Middleware

Mike Anderson
Chief Scientist

The PTR Group, LLC.
mailto: mike@theptrgroup.com
http://www.ThePTRGroup.com

mailto:mike@theptrgroup.com
http://www.theptrgroup.com/

What We Will Talk About…
• What is ROS?

• Installing ROS

• Testing your installation

• ROS components

• ROS concepts

• Computation graph and naming conventions

• Your first robot

• Pub/Sub example

• Summary

What is ROS?
• The Robot Operating System is a collaborative effort to

create a robust, general purpose mechanism for creating
applications for robotics
• Why? Because robotics control software is hard!

• Things that seem trivial to a human can be wildly hard for a
robot
• Just think about turning a door knob to open a door or

walking up steps…

• There are so many different robotic applications, no one individual, company,
university or laboratory could possibly enumerate all of the options
• ROS is the culmination of the underlying infrastructure for robotic control, a robust set of tools, a

collection of capabilities than can be mixed and matched and a broad community ecosystem of
developers working on specific topic areas

History and Legacy
• Started in 2007 as an outgrowth of the STanford AI Robot (STAIR) and

Personal Robots (PR) programs from Stanford University in Stanford, CA

• Sponsored by an local robotics incubator named Willow Garage
• Willow Garage produced a robot known as the PR2

• The purchasers of the PR2 became a loose federation of developers
each contributing their code back to the greater community

• Licensed under the permissive BSD open-source license
• However, some modules have licenses like ASLv2, GPLv2, MIT, etc.

• Latest release is “Lunar Loggerhead” in May of 2017

• ROS is supported by the Open Source Robotics Foundation
• https://www.osrfoundation.org/

Source: w illow garage.com

https://www.osrfoundation.org/
https://www.osrfoundation.org/

Installing ROS

• Native ROS installation of either Kinetic Kame or Lunar
Loggerhead is supported out of the box for Debian-based
distributions such as Ubuntu, Linux Mint, Debian and
derivative distributions
• Some experimental support for Gentoo, macOS and Yocto

• Pretty much your typical add GPG key, add apt sources, apt-get update, apt-get
install sequence found with Debian PPAs etc.
• http://wiki.ros.org/lunar/Installation/Ubuntu

Source: ros.org

http://wiki.ros.org/lunar/Installation/Ubuntu
http://wiki.ros.org/lunar/Installation/Ubuntu

Next Steps…
• After the initial installation, you will need to initialize rosdep and set your

environment variables
$ sudo rosdep init

$ rosdep update

• Then take care of the environment:
$ echo "source /opt/ros/lunar/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

• In order to be able to build ROS packages, you’ll need some additional dependences:
$ sudo apt-get install python-rosinstall
python-rosinstall-generator python-wstool build-essential

• Now, you’re ready to test the installation

Testing the Installation with a simple build
• The ROS build system is called catkin

• The name catkin comes from the tail-shaped flower cluster found on willow trees -- a
reference to Willow Garage where catkin was created

• At this point, you’re ready to try a simple build:
$ mkdir –p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

• Even though the workspace is empty, you can still issue a make
$ cd ~/catkin_ws

$ catkin_make

Core ROS Components
• At its core, ROS is an anonymous publish/subscribe message-passing middleware

• Communications are asynchronous

• Some modules will publish a set of topics while others subscribe to that topic
• When new data is published, the subscribers can learn about the updates and can act on them

• Communication is implemented using a message-passing approach that forces
developers to focus on clean interface logic
• Described in the message interface definition language (IDL)

• ROS supports the recording and playback of messages
• Messages can be recorded to a file and then played back to republish the data at any time

• Allows for repeatability and facilitates regression testing

Core ROS Components #2

• Support for remote procedure calls via services
• While asynchronous communications via pub/sub is great, sometimes you need lock-step

synchronous behaviors

• Distributed parameter system
• Tasks can share configuration information via a global key-value store

• Provides a centralized point for changing configuration settings and the ability to change settings in
distributed modules

• Robot-specific features like a geometry library, mapping and navigation
functions, diagnostics and much more

• Extensive diagnostics capabilities

ROS Concepts

• ROS has three levels of concepts
• Filesystem level

• Computation level

• Community level

• The filesystem level encompasses resources you’ll likely encounter on disk
• Packages Message (msg) types

• Metapackages Service (srv) types

• Package manifests

• Repositories

ROS Concepts #2
• The Computation Graph is the peer-to-peer network of ROS processes that are working

together

• ROS computation graph level concepts include:
• Nodes Topics
• Master Services
• Parameter server Bags (places to store collected data)
• Messages

• The ROS community-level concepts facilitate the exchange of software and knowledge
between members of the community
• Distributions Mailing lists
• Repositories ROS Answers (FAQ site)
• The ROS Wiki Blog (information on updates including videos and photos)
• Bug ticket system

Filesystem Specifics
• Packages are the primary unit of software in ROS (finest granularity)

• Contains ROS runtime processes known as nodes, libraries, data sets, configuration files and
anything else that’s needed at this level

• Metapackages are a means to collect packages into related groups
• The package manifest (package.xml) provides the package name, version, description

license, dependencies and other metadata related to the package
• Repositories are collections of packages that share a common version control system

• Can be released as a unit using the bloom tool and may be mapped into rosbuild Stacks

• Message types describe the message data structures to be sent
• Service types define the request/response data structures for the service-level entity

in ROS

Computation Graph Level
• Nodes are the processes that perform

computation
• Very fine granularity such as motor control, lidar

interface, graphical view, etc.

• The Master is the clearing house for name registration
and lookup to the rest of the graph

• Parameter server allows data to be stored, by key, in a central location and is typically
part of the master

• Messages are the primary unit of communication in ROS and are data structures made
up of primitive types (integers, floating point, booleans, etc.) and can be nested

Source: ros.org

Computation Graph Level #2

• Topics represent the messages that are routed via the pub/sub semantics
• Node subscribe to topics while others publish topics

• Supports one-many, many-to-many transport

• Services are the implementation of the RPC mechanism for synchronous
communications in ROS

• Finally, bags are a format for record/playback of ROS message data and are the
primary mechanism for storing sensor data

Naming Structure
• The communications graph and its components are represented in a global namespace that

looks like a directory structure
• / is the top level

• Resources are defined in their namespace and may define and share other resources
• Resources can access anything in their namespace as well as those above their namespace

• Resources in different namespaces can be connected or integrated with code above both
name spaces

• Typically code stays in its own namespace to preclude accidentally accessing objects of the
same name in a different namespace
• Each name is resolved locally as though each domain was a top-level domain

• Names can begin with ~, / or an alpha character (upper or lower)
• Subsequent characters are alphanumeric, _ or /

Name Resolution

• There are four types of resource names in ROS
• Base, relative name, global name and private names

• Base name: base Names with no namespace qualifier

• Relative name: relative/name Name relative to the local namespace

• Global name: /global/name Fully qualified names

• Private name: ~private/name Names that are not visible outside the namespace

• By default, all name resolution is relative to the local namespace

• Package resource names take the form of <packagename>/<msgtype>
• E.g., std_msgs/String would be the String message type in the std_msgs package

Describing Robots in URDF

• The Unified Robot Description Format (URDF) is an XML-based way for
representing a robot model

• The ROS URDF package contains XML specifications
• All connections, mechanisms, subsystems, etc. must be described in URDF

• Can get really tedious

• They have developed Xacro (XML Macros) as an XML-based macro language to
simplify the definition of large robotic systems
• Xarco helps reduce duplication of information in the file

Example: Building a Basic Chassis

• Two basic URDF components are used to define a simple robot chassis

• The link component describes a rigid body based on its physical properties
• Dimensions, position in space, color, etc.

• Links are connected by joint components that describe the characteristics of the
connection
• E.g., Links connected, types of joint, degrees of freedom, axis of rotation, amount of

friction, etc.

• The URDF description is a set of these link elements and their associated joint
elements that connect the links together

A Simple Box in URDF
<?xml version='1.0'?>

<robotname=“elc_robot">

 <!-- Base Link -->

 <link name="base_link">

 <visual>

 <origin xyz="0 0 0" rpy="0 0 0" />

 <geometry>

 <box size="0.5 0.5 0.25"/>

 </geometry>

 </visual>

 </link>

</robot>

A box that is .5m long, .5m wide and .25m tall
Centered at the origin of (0,0,0)
No rotation in the roll, pitch, or yaw (rpy)

Create the Package

• We need to create a package for this URDF to be placed
$ catkin_create_pkg elc_robot

Created file elc_robot/package.xml

Created file elc_robot/CMakeLists.txt

Successfully created files in

/home/mike/catkin_ws/src/elc_robot. Please adjust the values

in package.xml.

$ cd ~/catkin_ws

$ catkin_make

<lots of build output>

Create the urdf Directory and Populate it
• In the elc_robot directory, we create a urdf directory for the model XML

$ cd src/elc_robot

$ mkdir urdf

• Copy the URDF model into the urdf directory

• In order to run the model, we need a launch specification (also in XML) that can be
passed to the roslaunch command

• We’ll be using a simple visualizer called rviz to get started

• Create a launch directory and then create a elcrobot_rviz.launch as shown on
the next page
$ mkdir launch

$ vi elcrobot_rviz.launch ; use your favorite editor

Create the Launch File
• Here is an example of a launch file:

<launch>

 <!-- values passed by command line input -->

 <arg name="model" />

 <arg name="gui" default="False" />

 <!-- set these parameters on Parameter Server -->

 <param name="robot_description" textfile="$(find elc_robot)/urdf/$(arg model)" />

 <param name="use_gui" value="$(arg gui)"/>

 <!-- Start 3 nodes: joint_state_publisher, robot_state_publisher and rviz -->

 <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

 <node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />

 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find elc_robot)/urdf.rviz" required="true" />

 <!-- (required = "true") if rviz dies, entire roslaunch will be killed -->

</launch>

Launch the Model in all its Glory!
$ cd ~/catkin_ws/src/elc_robot/

$ roslaunch elc_robot \
 elcrobot_rviz.launch \
 model:=elc_robot.urdf

• Wow, that’s a lot of work for a box!

• But, it gets better!
• Let’s put some wheels on it and color it

something other than red

• We’ll need to describe the wheels, their
radius, the joint connection to the base_link,
their inertia, collision characteristics and mass

Box with Wheels!

• After making all of the necessary
modifications, we have:

• Clearly, there is a lot of set up to
define the robot and all of its
connections

• But, once that’s done, we can actually
drive it around using gazebo

Gazebo

• ROS is compatible with a 3-D world simulator
known as gazebo

• With gazebo, you can take the model you’ve
built and place it into a simulated world so you
can drive it around, manipulate gravity, etc.

• Gazebo is a separate install unless you install
the “full_desktop” version of ROS initially

Example Pub/Sub

• The ROS wiki has a simple Pub/Sub example tutorial at:
• http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29

• Walking through the code can be most enlightening because you get to see the
definition of a message and the process for publishing/subscribing

• Clearly, there’s a lot more to all of this
• But, at least it’s a start

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c++)

Summary
• This has been a whirlwind tour of a clearly complex piece of code

• We’ve merely scratched the surface on this

• Defining the geometries of the robot can be daunting
• It’s a lot easier to build it in the real world!

• But, having described all of the interfaces and the message types and
interactions you will have a much better understanding of your robot

• Fortunately, there is a large community around ROS
• So, lots of folks to answer your questions

• And, many good reference books

Questions?

