

The Architecture for the Digital World®

LISA & Friends
Linux Interactive System Analysis

Patrick Bellasi
patrick.bellasi@arm.com

 2

Agenda
Presentation outline

 Short introduction of the main goals of the LISA toolkit
What do we need and why?

 Overall view of the main framework components
 Example usage scenario

Short introduction of a real (simple) use-case

Interactive session with questions

 3

Agenda
Presentation outline

 Short introduction of the main goals of the LISA toolkit
What do we need and why?

 Overall view of the main framework components
 Example usage scenario

Short introduction of a real (simple) use-case

Interactive session with questions

 4

Motivations
What is the aim of LISA[1]

A toolkit to support interactive analysis
 Supports the study of existing behaviours

e.g. Helps with - “how the hell does this PELT thing work?”

 Supports the analysis of new code being developed
e.g. What is the impact of code modifications on key behaviours ?

 Get insights on what's not working and possibly why
 Common language to share reproducible experiments

Allows to reproduce experiments on different targets

Flexible enough: programmers like extensible APIs

[1] https://github.com/ARM-software/lisa

https://github.com/ARM-software/lisa

 5

Motivations
Why (yet) another toolkit?

 Many different test suite already exist
KernelCI: mainly "just" build and boot validation... but a lot of it

LTP: “validate the reliability, robustness, and stability of Linux”

Intel's 0-day: continuous regression testing for mainline kernel

 These are mainly black-box analyses which do not give
enough insights

Benchmarks show regressions but do not pinpoint their reasons

Brute force analysis can point just to a specific patch
Still just reports what code is broken but usually not why or how

 6

Motivations
What do we need?

 Simple yet powerful API to
Generate test workloads and execute on test targets

Synthetic workloads allow to stimulate specific behaviours

Post process collected data to produce stats, plots and reports
A graphical representation is usually easy to understand than numbers

A set of assertions on specific features are useful for further investigations

 Main counter arguments
I can do everything with a bash scripts and some other tools

LISA doesn't want to replace them,
just make them (possibly) more easy to use

 7

Agenda
Presentation outline

 Short introduction of the main goals of the LISA toolkit
What do we need and why?

 Overall view of the main framework components
 Example usage scenario

Short introduction of a real (simple) use-case

Interactive session with questions

 8

Toolkit Organization
Abstract view of the flow

 Experimenting using an “interactive environment”

 Data analysis and
post-processing

 Tests definitions to
support regression
analysis

Evaluate trade-offs
on Power/Performances Classical flow vs LISA flow

 9

Toolkit Organization
Bird's eye view of the main components

Hardware Abstraction Layer

Data Collection and Analysis

Automated tests

Interactive test and analysis

https://github.com/ARM-software/devlib [1]
https://github.com/ARM-software/lisa [2]
https://github.com/ARM-software/trappy [3]
https://github.com/ARM-software/bart [4]

1

2

3
4

https://github.com/ARM-software/devlib
https://github.com/ARM-software/lisa
https://github.com/ARM-software/trappy
https://github.com/ARM-software/bart

 10

Agenda
Presentation outline

 Short introduction of the main goals of the LISA toolkit
What do we need and why?

 Overall view of the main framework components
 Example usage scenario

Short introduction of a real (simple) use-case

Interactive session with questions

 11

Example Usage Scenario
Analysis of a new Scheduler Feature

 Evaluate the SchedTune extension of the EA scheduler
A task must run 30% of its time on a big CPU when boosted 15%

Interactive Session

LITTLEs

LITTLE

bigsStart on big...

… run on LITTLEs…

… switch to big!

boost value

http://127.0.0.1:8888/tree/tutorial/00_LisaInANutshell.ipynb

The Architecture for the Digital World®

Thank You!

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Patrick Bellasi
patrick.bellasi@arm.com

 13

Detailed Examples

A bottom up presentation of all LISA modules

 14

Main Components
IPython Notebooks: Interactive Python Scripting (and more)

 What is a Notebook?
Web based interface for “interactive” code execution

Code organized into cells which can be re-executed out-of-order

Support for different languages and code completion
Easy access to embedded documentation

Key bindings available for all the main actions

 How can a notebook be used?
Interactively build experiments

Generate reports which can be exported in HTML
Which mixes code and comments

Export code as a standalone python script

 15

Main Components
IPython Notebooks: Example

 Enter the LISA Shell
Custom commands are available
for most common operations

 Start the notebook server
By default uses the local version
of needed libraries

Easy access to the code of internal
modules

Thus you can easily contribute your
patches back to the mainline ;-)

Hands On

http://127.0.0.1:8888/tree

 16

Main Components
Devlib[1]: Target Abstraction

 Low-level library used by WorkloadAutomation
 Command execution is on the remote target

Supports multiple platforms: linux, android (and chromeos)
Using SSH or ADB as communication channels
Single connection for all commands

 Provides APIs for the main Linux frameworks
Generic modules: cgroups, cpufreq, cpuidle, hotplug, hwmon, thermal

Special modules: android, biglittle

 Support energy measurement instruments
TC2/Juno energy counters, ARM EnergyProbe, DAQs

Docs

[1] https://github.com/ARM-software/devlib
[2] https://github.com/ARM-software/workload-automation

https://github.com/ARM-software/workload-automation
https://github.com/ARM-software/devlib
https://github.com/ARM-software/workload-automation
http://127.0.0.1:8888/tree

 17

Main Components
TestEnv: Test Environment setup for specific Targets

 In a nutshell: a wrapper of devlib
Simplifies code in notebooks and tests

Provides the glue-code to setup a test environment

E.g. connect to client, initialize modules, setup the output folder

Allows the definition of the setup in a declarative format
Could be either a file or an inline python dictionary

Exposes the devlib API

 Provides additional APIs for some common tasks
E.g. deploy a different kernel, reboot the target

Hands On

http://127.0.0.1:8888/notebooks/tutorial/02_TestEnvUsage.ipynb

 18

Main Components
WlGen: portable Synthetic Workloads generation

 Synthetic workloads configuration and execution
perf bench sched

messaging (aka hackbench) and pipe

rt-app
set of base behaviours (periodic, step, ramp, …) which can be composed
to create more complex execution scenarios

custom JSON configuration

 Execution tunables support:
CPU pinning, CGroups, FTrace

Hands On

http://127.0.0.1:8888/notebooks/tutorial/03_WlGenUsage.ipynb

 19

Main Components
Executor: tests configuration and data collection

 Simple automation for experimental data collection
 Using a simple dictionary or JSON configuration

confs target configurations to test

wloads synthetic workloads to execute on each configuration

iterations number of executions for each wload

Hands On

http://127.0.0.1:8888/notebooks/tutorial/04_ExecutorUsage.ipynb

 20

Main Components
TRAPpy[1]: From FTrace events to PANDAS DataFrames

 Based on PANDAS DataFrames
Python “standard” framework for data analysis and statistics

ftrace events are translated into tables
Events must match a specific template: (unique_word): ((key)=(value))+

Example (raw trace, i.e. generated by trace-cmd report -r):
sudo-3224 [001] 228774.292951: sched_switch: prev_comm=sudo prev_pid=3224 prev_prio=120 prev_state=2048
 next_comm=kschedfreq:1 next_pid=1822 next_prio=49

 API for trace event analysis
Plots of table:key “signals”

both static and interactive plots

Provide data structure support for BART

http://pandas.pydata.org/

Hands On

[1] https://github.com/ARM-software/trappy

Docs

https://github.com/ARM-software/trappy
http://127.0.0.1:8888/notebooks/tutorial/05_TrappyUsage.ipynb
http://arm-software.github.io/trappy/

 21

Data Analysis
Exploiting Platform Data for Trace Analysis

 Platform specific information can be useful
e.g. CPU topology, OPP curves, EnergyModel data, …

Information on these are collected by TestEnv
platform.json file in the results folder (i.e. te.res_dir)

 TRAPpy is a generic module for trace events parsing
It does not know about a specific platform

Even if this information are available via the LISA::TestEnv module

although we can combine “on-demand” TRAPpy with platform
data some commonly used analysis are worth to be shared

 22

Data Analysis
Filtering and Plotting Predefined functions

Hands On

 LISA::Trace glues platform data
with TRAPpy DataFrames

more complete analysis dataset

 LISA::Filters
commonly used events filtering functions

 LISA::TraceAnalysis
commonly used trace events plots

 LISA::PerfAnalysis
commonly used performance plots

http://127.0.0.1:8888/notebooks/tutorial/06_TraceAnalysis.ipynb

 23

Data Analysis
Using RT-App to evaluate task performances

 RT-App extended to report performance metrics[1]

suitable to evaluate some EAS behaviors
optimal CPU/OPP selection and SchedTune boosting

too pessimistic on single period missing
we will add an option to reset metrics after each new activation

 Other metrics can be added
Linaro proposed a “dropped-frames” counter,

we should integrate that as well

MaxSlack=Period conf −RunTimeconf

PerfIndex=
Periodconf −RunTimemeas

MaxSlack

NegSlack percent=
∑ Max (0,RunTimemeas−Period conf)

∑ RunTimemeas

[1] libs/utils/results.py::RTAppPerf

Hands On

http://127.0.0.1:8888/notebooks/tutorial/07_PerfAnalysis.ipynb

 24

Automated Testing
LisaTest: Regression Testing Analysis

 Support for batch execution of tests
data collection driven by the lisa::executor module

easy to develop code on Notebook and than convert to a test

config file based tests definition
a JSON file is used to describe “confs” and “wloads”

 Tests executes after data collection complete
execution model based on standard python nosetest

each test is defined within a function which name starts by “test_”

 Post processing and reporting functions available

 25

Automated Testing
Evaluation of Energy-Performances tread-offs

 We can spent more energy provided that we get some
performance benefits

SchedTune aims at controling this trade-off at run-time

 Experiments reports Energy-vs-Performance metrics

EDP=Energy∗∑ RunTimemeas

Energy Delay Product (EDP)

 26

Automated Testing
BART[1]: Behavioural Analysis

 Set of APIs on top of TRAPpy DataFrames
allows to extract “features” from trace events

How long a task run on a CPU? Does it switch to another CPU?
How long the temperature remain within a specified range?

Advanced tests for “sched switches” and “thermal events”
the API is (going to be) generic enough to introduce other events

 Aims at supporting the definition of behavioural tests
small and self-contained functional behaviour

e.g. task migration, frequency switch, OPP capping

a failure should pinpoint a specific code path
suitable to evaluate the impact of code additions/updates

[1] https://github.com/ARM-software/bart

https://github.com/ARM-software/bart

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

