ARM Device Tree status report

Grant Likely
Secret Lab Technologies Ltd.

October 28, 2010
Embedded Linux Conference Europe
Cambridge, UK
Overview

- Device Tree Overview
- Integration with the Linux device model
- Current State
- Next steps
IT TOOK A LOT OF WORK, BUT THIS LATEST LINUX PATCH ENABLES SUPPORT FOR MACHINES WITH 4,096 CPUs, UP FROM THE OLD LIMIT OF 1,024.

DO YOU HAVE SUPPORT FOR SMOOTH FULL-SCREEN FLASH VIDEO YET?

NO, BUT WHO USES THAT?
Terminology

- **OpenFirmware (OF) Device Tree (DT)**
 - Device representation exported by Open Firmware
 - This presentation is *not* about Open Firmware
- **Flattened Device Tree (FDT)**
 - Firmware-independent device tree encoding
- **Device Tree Compiler (DTC)**
 - Convert between .dts and .dtb
 - Device Tree Source (.dts)
 - Device Tree Blob (.dtb)
 - Tokenized form; used by kernel
- **Bindings**
 - Documentation of how the DT describes hardware
Device Tree – 3 minute overview

• Data structure for describing hardware
• Passed to kernel at boot
 – By firmware, or
 – Linked into boot wrapper
• Alternative to hard-coded platform details
Device Tree Model

• Tree Structure with nodes & properties
 – Nodes give structure
 – Properties add detail
 • Key-value pairs
 • Arbitrary data

• Secondary links - “phandles”
 – Interdependencies aside from natural tree

• Well defined usage conventions
 – 'compatible' property uniquely identifies devices
 – Each 'compatible' value associated with a 'binding'.
 – Common conventions for address ranges, irqs, gpios and others.
Device Tree – Why?

- Multiplatform
- Simplify board ports
- Standardized Firmware → Kernel data passing
Device Tree – Why not?

- Complexity (Does it buy me anything?)
- Learning curve
- More work?
Device Tree – What it is not?

- Doesn't replace board-specific code
 - Simplifies the common-case
 - Method to identify and handle special cases
- Doesn't add features to your platform
- Isn't a boot architecture
 - (but is an important component)
Model - Firmware

- Firmware obtains .dtb and passes to kernel
- How?
 - Options:
 - Load and pass verbatim
 - Load and modify
 - Generate from scratch
 - Here there be Dragons!
 - Kernel doesn't care
Model – ARM Booting

- Device Tree passed r2 instead of ATAGs
 - All firmware data passed within dt structure
- Early init
 - Determine memory
 - Determine machine
 - Boot to mm set up
Model – ARM Booting

- Unflatten .dtb
 - Allocate space for unpacked form
 - Can now directly dereference tree
- Boot to machine_init
- Register devices
Digression: Linux device model

- Busses
- Devices
- Drivers
- Hierarchy of Devices
Digression: Linux device model

Drivers registered against bus types

- root
- platform
 - spi
 - bridge
 - uart1
 - i2c bus
 - eeprom
 - temp
 - rtc
 - pci bus
 - ethernet

- platform_bus_type
- i2c_bus_type
- pci_bus_type
DT & Linux Device Model historical

- SPARC
 - Walk entire tree, register of_device for each node
 - drivers may bind against any node
 - Other bus registrations mirror of_device hierarchy (ie. PCI)
 - Duplicate 'struct device'
DT & Linux Device Model historical

- PowerPC/Microblaze
 - Subset of tree registered as of_devices
 - Typically only mmio devices
 - Drivers may create child busses of different types
 - No device-tree integration with non-of_devices
 - OF wrappers for other busses
DT & Linux Device Model
new approach

- Conceptual flaws of of_platform_bus
 - Duplicate of platform bus
 - DT data applicable to more than just platform devices
 - platform_driver won't bind against an of_device
DT & Linux Device Model

new approach

- DT is *support data*
 - Make available to all devices
- Move probe data
 - *of_node → struct device*
 - *of_match_table → struct device driver*
- Generalize OF-style binding functions
 - Available to any bus type
- Eliminate of_platform_bus_type
 - Merge with platform_bus_type
Current State

- Mainline Infrastructure works
 - Register mapping
 - IRQ mapping (mostly)
 - Integrated with platform, i2c, spi and mdio bus_types

- Board support (minimal)
 - Versatile on QEMU
 - Versatile Express
 - OMAP3
 - i.MX51
 - All out of mainline

- Registering platform devices
- Binding against drivers
Current State

- Added MIPS support in 2.6.37 merge window
- *Almost* added x86 support in 2.6.37
 - OLPC and Xilinx FPGA
 - Last minute changes defer to 2.6.38
- Any arch can add CONFIG_OF
- ARM remains out of mainline
 - Being cautious, nothing else
Next Steps

- Finish board support
- Complement to ARM Multi-Platform
- Documentation
 - How to use it
 - Bindings
 - http://devicetree.org
- Merge it!
Resources

• Secret Lab git tree
 - git://git.secretlab.ca/git/linux-2.6
 - Branch: test-devicetree
 - Unified code, bindings

• Web sites
 - http://devicetree.org
 - https://wiki.ubuntu.com/KernelTeam/ARMDeviceTrees
Acknowledgements

- CE Linux Forum (now Linux Foundation)
- IBM/Freescale/Canonical
- Too many people to mention