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The context

● Linux about to be natively real-time
– PREEMPT_RT close to mainline

● Legacy applications knocking on Linux's door
– Traditional, embedded RTOS

– Non-POSIX core API

– Flat / physically addressed memory

– Typically: VxWorks, pSOS, VRTX etc.



   

The issue

● Porting them to Linux currently means
– Rebasing on Linux, changing design

or,

– Keeping design, keeping proprietary RTOS

● How to go the Linux way?
– Keeping design, using Linux technologies



   

Possible solution

● Combine existing Linux technologies
– Native real-time support

– Linux-native virtualization

– RTOS emulation



   

Common porting strategies

● Port to dual kernel
– Over POSIX API

– Over API emulator

– Over ad hoc API
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Common porting strategies

● Go Linux native
– Over POSIX API

– Over API emulator
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Common porting strategies

● Introduce virtualization
– Original RTOS guest

– Vendor-specific

● Bare metal hypervisor
– Leverage  multi-core

Bare metal (RT) HypervisorBare metal (RT) Hypervisor
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Approaches are challenging

● Dual kernel Linux architecture is complex
– Pressure on application design
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Approaches are challenging

● Native real-time Linux is complex
– Pressure on system configuration
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Approaches are challenging

● Proprietary virtualization systems?
– Introduce dependencies on vendor

● Hypervisor technology
● Private (PV) Linux kernel
● Original RTOS as guest

– Enable Linux for proprietary RTOS

BUT,

– Do not help the Linux real-time effort
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– Pitfalls in mapping common calls
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Teams are challenged

● Inclination to seek 1:1 API mapping
– Over-emulation of missing calls

– Pitfalls in mapping common calls

● Driver model
– Weak vs strong

– Linux kernel API is more complex

● Protocol stacks
– Keep “as is” or offload to Linux?
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● Software architecture
– BSP code exposed

– Application and driver code entangled

– Non-public API sometimes used



   

Legacy issues

● Software architecture
– BSP code exposed

– Application and driver code entangled

– Non-public API sometimes used

● Programming model
– Flat / physically addressed memory assumed

– Supervisor mode assumed

– CPU architecture assumed



About RTOS emulators



   

RTOS API emulation?

● A way to mimic the RTOS interfaces
– Evades the BSP issue

– Source-level approach

● Has real-time requirements
– Must run over a deterministic core

– Must exhibit real-time properties itself



   

Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set
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Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set

Do you trust your vendor documentation? YES

Should your code rely on undocumented features? NO

Should your code expect undocumented behavior? NO

Therefore, you don't need the original API 
implementation to emulate it properly.
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Myths and Reality

● Isn't API emulation slower?
– Traditional RTOS share basic semantics

● Optimized building blocks can be made
● Efficient “window-dressing” follows
● Leveraging single address space helps

– Naive emulation over POSIX not enough
● POSIX semantics do not map 1:1
● POSIX-based building blocks may work better
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– noarch/generic core services
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RTOS emulators shortcomings

● Limited emulation coverage
– noarch/generic core services

● Require Application / Driver split
– BSP code not accessible from user-space

– I/O resources live in kernel space

● Restricted by Linux protections
– No supervisor actions from user-space



Our assets



   

PREEMPT-RT

● Fully native real-time support
– Enables real-time virtualization

● Promise of embedded multi-core scalability
– Sophisticated locking model

– Sophisticated scheduling



   

KVM

● Complete sandboxing
● Compatible memory spaces
● Device virtualization through host

– virtio

● Device emulation through VM
– Qemu-based modelling



   

Introducing Xenomai

● Generic RTOS core
● Host abstraction

– Dual kernel

– Simulator

– (Single image *)

Generic RTOS

SAL
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Introducing Xenomai

● Generic RTOS core
● Host abstraction

– Dual kernel

– Simulator

– (Single image *)

● RTOS personalities

VxWorks pSOS VRTX ...

Generic RTOS

SAL

Host system (Linux, Simulator)

(*) Xenomai/SOLO



   

Introducing Xenomai

● RTOS building blocks
– Thread scheduling

– Synchronization

– Interrupt handling

– Memory allocation

– Timing services B
ui

ld
in

g 
bl

oc
ks

Sched

Synch

IRQ

Memory

Timing



   

Introducing Xenomai

● RTOS building blocks
– Thread scheduling
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What about combining?

● Real-time host kernel
– PREEMPT-RT

Real-time kernel sub-systems
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What about combining?

● Real-time host kernel
– PREEMPT-RT

● Virtualization core
– KVM

– QEMU

● RTOS emulation
– Xenomai

KVM

Xenomai
emulator

QEMU



   

Virtualization + RTOS emulation

Improvements
● Native real-time
● Original programming model
● Better emulation coverage
● Sandboxing
● Legacy device emulation



   

Virtualization + RTOS emulation

Restrictions
● No ABI compatibility
● Still not 100% source compatible
● Reworking the device driver layer still required



Virtualize & Emulate



   

Improved emulation engine

Emulation core
● Xenomai guest

– Freestanding mode

– RTOS personality

● QEMU
– Virtual machine
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Improved emulation engine

Handling I/O
● Paravirtualized

– Common hw

– High bandwidth

● Emulated
– Precise emulation

– Low bandwidth
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Improved emulation engine

Native real-time VMM
● PREEMPT-RT host

– KVM-enabled

Linux -rt
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TODO list

● Real-time aware KVM
– Guest scheduling

● Real-time aware QEMU
– I/O emulation

● Guest mode Xenomai core
● Extended emulation coverage



More applications
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– Virtual RT appliance (sort of)
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Could also be used for...

● Application-specific virtual RTOS
– Virtual RT appliance (sort of)

● Transition path for in-house RTOS
– Consolidate & extend via virtualization

● Simulation of complex architectures
– e.g. modeling Arinc653 systems



Conclusion



   

Legacy RT application to Linux

Today
● Rebase on Linux, change design
● Keep design, keep proprietary RTOS



   

●Legacy RT application to Linux

Today
● Rebase on Linux, change design
● Keep design, keep proprietary RTOS

Tomorrow
● Combine existing technologies

– Rely on real-time capable virtualization

– Couple with accurate RTOS emulation



   

●The End

Thank you for attending
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