
Philippe GERUM - SourceTrek

ELCEurope 2009 Grenoble

Introduction

The context

● Linux about to be natively real-time
– PREEMPT_RT close to mainline

The context

● Linux about to be natively real-time
– PREEMPT_RT close to mainline

● Legacy applications knocking on Linux's door
– Traditional, embedded RTOS

– Non-POSIX core API

– Flat / physically addressed memory

– Typically: VxWorks, pSOS, VRTX etc.

The issue

● Porting them to Linux currently means
– Rebasing on Linux, changing design

or,

– Keeping design, keeping proprietary RTOS

● How to go the Linux way?
– Keeping design, using Linux technologies

Possible solution

● Combine existing Linux technologies
– Native real-time support

– Linux-native virtualization

– RTOS emulation

Common porting strategies

● Port to dual kernel
– Over POSIX API

– Over API emulator

– Over ad hoc API

Kernel space

User space

Real-time core

Application

APIs, emulators

Linux
sub-systems

RT drivers
RT drivers

Regular
drivers

Regular
drivers

RT libraries GNU libc

Common porting strategies

● Go Linux native
– Over POSIX API

– Over API emulator

Kernel space

User space

Application

Linux
sub-systems

RT drivers
RT drivers Regular

drivers

Regular
drivers

GNU libc

EmulatorsEmulators

Common porting strategies

● Introduce virtualization
– Original RTOS guest

– Vendor-specific

● Bare metal hypervisor
– Leverage multi-core

Bare metal (RT) HypervisorBare metal (RT) Hypervisor

L
in

u
x

R
T

O
S

S
B

C
 /

h
ar

d
w

ar
e

Core Core

Approaches are challenging

● Dual kernel Linux architecture is complex

Approaches are challenging

● Dual kernel Linux architecture is complex

LibrariesLibraries

R
e

a
l-t

im
e

 s
ta

ck

R
e

g
ul

ar
 L

in
u

x

Drivers

Core Core

Drivers

Libraries

Apps Apps

Approaches are challenging

● Dual kernel Linux architecture is complex
– Pressure on application design

LibrariesLibraries

R
e

a
l-t

im
e

 s
ta

ck

R
e

g
ul

ar
 L

in
u

x

Drivers

Core Core

Drivers

Libraries

Apps Apps

Approaches are challenging

● Native real-time Linux is complex

Approaches are challenging

● Native real-time Linux is complex

LibrariesLibraries

Drivers

Core

Apps

Global efficiency

General fairness

Bounded latency

Total unfairness

RegularReal-time

Approaches are challenging

● Native real-time Linux is complex
– Pressure on system configuration

LibrariesLibraries

Drivers

Core

Apps

Global efficiency

General fairness

Bounded latency

Total unfairness

RegularReal-time

Approaches are challenging

● Proprietary virtualization systems?

Approaches are challenging

● Proprietary virtualization systems?
– Introduce dependencies on vendor

● Hypervisor technology
● Private (PV) Linux kernel
● Original RTOS as guest

Approaches are challenging

● Proprietary virtualization systems?
– Introduce dependencies on vendor

● Hypervisor technology
● Private (PV) Linux kernel
● Original RTOS as guest

– Enable Linux for proprietary RTOS

Approaches are challenging

● Proprietary virtualization systems?
– Introduce dependencies on vendor

● Hypervisor technology
● Private (PV) Linux kernel
● Original RTOS as guest

– Enable Linux for proprietary RTOS

BUT,

– Do not help the Linux real-time effort

Teams are challenged

● Inclination to seek 1:1 API mapping
– Over-emulation of missing calls

– Pitfalls in mapping common calls

Teams are challenged

● Inclination to seek 1:1 API mapping
– Over-emulation of missing calls

– Pitfalls in mapping common calls

● Driver model
– Weak vs strong

– Linux kernel API is more complex

Teams are challenged

● Inclination to seek 1:1 API mapping
– Over-emulation of missing calls

– Pitfalls in mapping common calls

● Driver model
– Weak vs strong

– Linux kernel API is more complex

● Protocol stacks
– Keep “as is” or offload to Linux?

Legacy issues

● Software architecture
– BSP code exposed

– Application and driver code entangled

– Non-public API sometimes used

Legacy issues

● Software architecture
– BSP code exposed

– Application and driver code entangled

– Non-public API sometimes used

● Programming model
– Flat / physically addressed memory assumed

– Supervisor mode assumed

– CPU architecture assumed

About RTOS emulators

RTOS API emulation?

● A way to mimic the RTOS interfaces
– Evades the BSP issue

– Source-level approach

● Has real-time requirements
– Must run over a deterministic core

– Must exhibit real-time properties itself

Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set

Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set

Do you trust your vendor documentation?

Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set

Do you trust your vendor documentation? YES

Should your code rely on undocumented features?

Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set

Do you trust your vendor documentation? YES

Should your code rely on undocumented features? NO

Should your code expect undocumented behavior?

Myths and Reality

● Can (RTOS) API emulation be accurate?
– Based on public, dependable interfaces

– Relies on a documented feature set

Do you trust your vendor documentation? YES

Should your code rely on undocumented features? NO

Should your code expect undocumented behavior? NO

Therefore, you don't need the original API
implementation to emulate it properly.

Myths and Reality

● Isn't API emulation slower?

Myths and Reality

● Isn't API emulation slower?
– Traditional RTOS share basic semantics

● Optimized building blocks can be made
● Efficient “window-dressing” follows
● Leveraging single address space helps

Myths and Reality

● Isn't API emulation slower?
– Traditional RTOS share basic semantics

● Optimized building blocks can be made
● Efficient “window-dressing” follows
● Leveraging single address space helps

– Naive emulation over POSIX not enough
● POSIX semantics do not map 1:1
● POSIX-based building blocks may work better

RTOS emulators shortcomings

● Limited emulation coverage
– noarch/generic core services

RTOS emulators shortcomings

● Limited emulation coverage
– noarch/generic core services

● Require Application / Driver split
– BSP code not accessible from user-space

– I/O resources live in kernel space

RTOS emulators shortcomings

● Limited emulation coverage
– noarch/generic core services

● Require Application / Driver split
– BSP code not accessible from user-space

– I/O resources live in kernel space

● Restricted by Linux protections
– No supervisor actions from user-space

Our assets

PREEMPT-RT

● Fully native real-time support
– Enables real-time virtualization

● Promise of embedded multi-core scalability
– Sophisticated locking model

– Sophisticated scheduling

KVM

● Complete sandboxing
● Compatible memory spaces
● Device virtualization through host

– virtio

● Device emulation through VM
– Qemu-based modelling

Introducing Xenomai

● Generic RTOS core
● Host abstraction

– Dual kernel

– Simulator

– (Single image *)

Generic RTOS

SAL

Host system (Linux, Simulator)

(*) Xenomai/SOLO

Introducing Xenomai

● Generic RTOS core
● Host abstraction

– Dual kernel

– Simulator

– (Single image *)

● RTOS personalities

VxWorks pSOS VRTX ...

Generic RTOS

SAL

Host system (Linux, Simulator)

(*) Xenomai/SOLO

Introducing Xenomai

● RTOS building blocks
– Thread scheduling

– Synchronization

– Interrupt handling

– Memory allocation

– Timing services B
ui

ld
in

g
bl

oc
ks

Sched

Synch

IRQ

Memory

Timing

Introducing Xenomai

● RTOS building blocks
– Thread scheduling

– Synchronization

– Interrupt handling

– Memory allocation

– Timing services B
ui

ld
in

g
bl

oc
ks

e.
g.

 V
xW

or
ks

taskLib

semLib

msgQLib

wdLib

tickLib

sysLib

Sched

Synch

IRQ

Memory

Timing

What about combining?

● Real-time host kernel
– PREEMPT-RT

Real-time kernel sub-systems

Real-time
Application

What about combining?

● Real-time host kernel
– PREEMPT-RT

● Virtualization core
– KVM

– QEMU

KVM

Guest

QEMU

What about combining?

● Real-time host kernel
– PREEMPT-RT

● Virtualization core
– KVM

– QEMU

● RTOS emulation
– Xenomai

KVM

Xenomai
emulator

QEMU

Virtualization + RTOS emulation

Improvements
● Native real-time
● Original programming model
● Better emulation coverage
● Sandboxing
● Legacy device emulation

Virtualization + RTOS emulation

Restrictions
● No ABI compatibility
● Still not 100% source compatible
● Reworking the device driver layer still required

Virtualize & Emulate

Improved emulation engine

Emulation core
● Xenomai guest

– Freestanding mode

– RTOS personality

● QEMU
– Virtual machine

Emulator

Xenomai

QEMU

Application

Improved emulation engine

Handling I/O
● Paravirtualized

– Common hw

– High bandwidth

● Emulated
– Precise emulation

– Low bandwidth

Emulator

Xenomai

QEMU

PV

Drivers

EMU

vi
rt

io

Application

Improved emulation engine

Native real-time VMM
● PREEMPT-RT host

– KVM-enabled

Linux -rt

Emulator

Xenomai

QEMU

PV

KVM

Drivers

EMU

vi
rt

io

Application

TODO list

● Real-time aware KVM
– Guest scheduling

● Real-time aware QEMU
– I/O emulation

● Guest mode Xenomai core
● Extended emulation coverage

More applications

Could also be used for...

● Application-specific virtual RTOS
– Virtual RT appliance (sort of)

Could also be used for...

● Application-specific virtual RTOS
– Virtual RT appliance (sort of)

● Transition path for in-house RTOS
– Consolidate & extend via virtualization

Could also be used for...

● Application-specific virtual RTOS
– Virtual RT appliance (sort of)

● Transition path for in-house RTOS
– Consolidate & extend via virtualization

● Simulation of complex architectures
– e.g. modeling Arinc653 systems

Conclusion

Legacy RT application to Linux

Today
● Rebase on Linux, change design
● Keep design, keep proprietary RTOS

●Legacy RT application to Linux

Today
● Rebase on Linux, change design
● Keep design, keep proprietary RTOS

Tomorrow
● Combine existing technologies

– Rely on real-time capable virtualization

– Couple with accurate RTOS emulation

●The End

Thank you for attending

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

