Threat Modelling - Key Methodologies and Applications from OSS CIP (Civil Infrastructure Platform) Perspective

Dinesh Kumar
Project Manager, Toshiba Software India

SZ Lin (林上智)
TSC Representative, Moxa Inc.

About Us

• Dinesh Kumar <dinesh.kumar@toshiba-tsip.com>
 • Working for Toshiba Software India
 • Works for CIP Security work group

• SZ Lin (林上智) <sz.lin@moxa.com>
 • Working for Moxa Inc.
 • Contribute to Linux and other OSS projects

• 4096R/9561F3F9
 • 178F 8338 B314 01E3 04FC 44BA A959 B38A 9561 F3F9
Civil Infrastructure
The key challenges

- Apply IoT concepts to industrial systems.
- Ensure quality and longevity of products.
- Keep millions of connected systems secure.
CIP is the Solution

Industrial grade
- Reliability
- Functional Safety
- Real-time capabilities

Sustainability
- Product life-cycles of decades
- Backwards compatibility
- Standards

Security
- Security & vulnerability management
- Firmware updates
- Minimize risk of regressions
CIP is the Solution

Establishes an “Open Source Base Layer (OSBL)”

- CIP Core packages (tens)
- CIP kernel (10+ years maintenance, based on LTS kernels)
- company-specific middleware and applications (hundreds)
- additional packages (hundreds)
The Scope of CIP

- **On-device software stack**
 - **Linux Kernel**
 - Super Long Term Supported Kernel (SLTS)
 - **Middleware/Libraries**
 - Domain Specific communication (e.g. OPC UA)
 - Safe & Secure Update
 - Real-time support
 - CIP Core Packages
 - **User space**
 - App container infrastructure (mid-term)
 - Shared config. & logging
 - Monitoring
 - Security
 - **Kernel space**
 - App Framework (optionally, mid-term)
 - Multimedia
 - Real-time / safe virtualization

- **Tools**
 - Build environment (e.g. bitbake, dpkg)
 - Test automation
 - Tracing & reporting tools
 - Configuration management
 - Device management (update, download)
 - Application life-cycle management

- **Concepts**
 - Functional safety architecture/strategy, including compliance w/ standards (e.g., NERC CIP, IEC61508)
 - Long-term support Strategy: security patch management
 - Standardization collaborative effort with others
 - License clearing
 - Export Control Classification

- **Product development and maintenance**
 - Security patch management
 - Functional safety strategy
 - Standardization
 - License clearing
 - Export Control Classification
Security Workgroup

- Protect the asset in the civil infrastructure system by reducing the risk
- Adapt the international standard - ISA/IEC 62443 (Industrial Automation & Control System Cybersecurity Standards)
Cybersecurity Risk

Risk = Threat X Vulnerability X Consequence
What is Threat?

Threat

• Can be initiated by system itself as well as outsider
• Comparatively hard to detect than attacks
• Information may or may not be altered or damaged
• Circumstance that has ability to cause damage
• May or may not be malicious
• Can be intentional or unintentional

src: https://pixabay.com/zh/illustrations/away-junction-direction-1020200/
The process of anticipating
“what could go wrong”
and then forecasting
“how it can go wrong.”
General Threat Modelling Objectives

- Attack surface reduction
- Secure default configurations
- Least privilege
- Defense in depth
- Compartmentalization
- Policy compliance
CIP - Objective of Threat Modelling

• Help CIP end users to re-use CIP platform reference threat modelling and build further security on top of it
• Periodically review and update threat model to incorporate newly reported threats
• Reduce the risk of Open Source Base Layer
Model capability, intent, and targeting for adversarial threats. Find out the actions that the threat agent might conduct.

Threat actions
Model the actions which might conducted by threat actor. The common method is STRIDE model developed by Microsoft.

Threat activity
Model the activity which conducted by a series of threat actions to achieve desired outcome. The common method is attack tree.

Vulnerability viewpoint
Model the vulnerability within the asset which may existed in the organization. Typically, massive of technical information is essential as indicators.
Key Threat Modelling Methodologies

• STRIDE threat modelling
• Attack trees
• Process for Attack Simulation and Threat Analysis (PASTA)
• Common Vulnerability Scoring System (CVSS)
• Security Cards
• Hybrid Threat Modelling Method (hTMM)
Risk mitigation by Threat Modelling

- **Four ways to reduce risk by using threat analysis report**
 - Redesign to eliminate
 - Takes more time more resources, sometime may not be feasible as component development is out of your control
 - Apply standard mitigations
 - Investigate or re-use how similar threats were mitigated
 - Invent new mitigations
 - It could be riskier if not done properly
 - Adapt compensating controls
 - Take appropriate extra measures in implementation
Data-flow Diagram (DFD) cont...

- **Processes**
 - are elements that, based on their input, perform actions and/or generate outputs.

- **Data stores**
 - are sinks or sources of data. Examples are databases or internal storage.

- **Data flows**
 - represent the flow of information between elements. A data flow can be a protocol specific communication link such as HTTPS or UDP.

- **External interactors**
 - are elements whose influence should be taken into account, but which are outside the scope of the analysis.

- **Trust boundaries**
 - divide the elements in the diagram into different trust zones, e.g. elements in open networks vs elements in internal networks.
Data-flow Diagram (DFD)

External Entity
- People
- Other systems
- Web portals

Processes
- DLL/.so
- Components
- Services
- exe
- Web services
- Assemblies

Data flow
- Function call
- Network traffic
- RPC

Data Store
- Database
- File
- Registry
- Config files
- Shared memory file
CIP Development DFD
STRIDE: Threats affecting elements

<table>
<thead>
<tr>
<th>Elements</th>
<th>Spoofing</th>
<th>Tampering</th>
<th>Repudiation</th>
<th>Information Disclosure</th>
<th>Denial of Service</th>
<th>Elevation of Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Data Stores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Processes</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Interactors</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CIP as Networking Switch Use Case

- The image depicts ICS reference architecture for Zones and Conduits
- Zone-1 components consist of core components
- Let’s try to create DFD and threat model for network switch assuming switch is based on CIP platform

STRIPE: CIP DFD (As Networking Switch)
STRIDE: Networking Switch (CIP Threat Analysis View)

- **Title:** Potential Data Repudiation by Authentication for configuration
- **Category:** Repudiation
- **Description:** Authentication for configuration claims that it did not receive data from a source outside the trust boundary. Consider using logging or auditing to record the source, time, and summary of the received data.
- **Interaction:** User credentials
- **Priority:** High
• Threat Model Analysis Report reveals about the missing security measures in existing models
• For each missing point, counter measures information should be provided or security measures should be taken
• At each design change or new package addition this step should be repeated
STRIDE: Standard Mitigations

<table>
<thead>
<tr>
<th>Threat</th>
<th>Security property</th>
<th>Mitigation methods</th>
<th>CIP feature to address standard Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoofing</td>
<td>Authentication</td>
<td>-Kerberos authentication
-PKI Systems, SSL, TLS
-Digital signatures</td>
<td>-shadow, pam,
-libpam_google Authenticator,
-openssl</td>
</tr>
<tr>
<td>Tempering</td>
<td>Integrity</td>
<td>-MAC(Mandatory Access Control)
-ACLs
-Digital Signatures
-Checksum</td>
<td>-acl
-openssl(digital signature verification)
-sha256, sha512</td>
</tr>
<tr>
<td>Repudiation</td>
<td>Non Repudiation</td>
<td>-Secure logging & auditing
-Digital signatures</td>
<td>-auditd
-rsyslog</td>
</tr>
<tr>
<td>Information disclosure</td>
<td>Confidentiality</td>
<td>-Encryption
-ACLs</td>
<td>-openssl
-acl</td>
</tr>
<tr>
<td>Denial of service</td>
<td>Availability</td>
<td>-ACLs
-Security policies
-Quota</td>
<td>-pam
-opensslh
-acl</td>
</tr>
<tr>
<td>Elevation of privileges</td>
<td>Authorization</td>
<td>-ACLs
-Group of Role membership
-Input Validation</td>
<td>-acl
-security policies published via application rules</td>
</tr>
</tbody>
</table>
Generic Attack Tree **example**

- Root node of the tree is the global goal of the attacker
- Each node represents one attack
- An attack tree defines a collection of possible attacks
- An attack described in a node may require one or more of many attacks described in child nodes to be satisfied
Obtain CIP Repository Admin Privilege

Obtain repository owner’s password
- Bribe the owner
- Brute force attack

Steal repository owner’s SSH private key
- Steal the laptop or keycard

Steal repository owner’s token
- Capture screen

Capture screen
Attack Tree for CIP based systems

Tamper CIP Software

Replace the CIP official image

- Hack into file server

Forge Debian binary package

- Hack the binary package CDN server
- Change APT source list
- Steal Debian developer’s private key

Inject malicious code

- Hack the upstream repository

Exploit known vulnerability

- Fuzzing attack
- Pen-testing
Validating Threat Models

● Validate whole threat model
 ○ Does diagram match the final code or final system implementation?
 ○ Are all threats enumerated
 ○ Minimum: STRIDE per element that touches a trust boundary
 ○ Has test/QA reviewed the model
 ■ Tester often finds issues with threat models or uncover something not considered during threat modelling
 ○ Is each threat mitigated
 ○ Are mitigations done right
Next Step for CIP Threat Modelling

1. Define Security requirements
2. Perform Threat Modeling
3. Mitigate potential threats
4. At any design change/package addition evaluate existing Threat Models
5. Repeat the cycle

Status:
- Completed
- In-Progress
- Yet to start
Reference for CIP resources

- CIP Home page
 - https://www.cip-project.org/
- CIP Work Groups wiki page
 - https://wiki.linuxfoundation.org/civilinfrastructureplatform/start
- CIP membership page
 - https://www.cip-project.org/about/join
- CIP Core gitlab
 - https://gitlab.com/cip-project/cip-core
- CIP Kernel gitlab
 - https://gitlab.com/cip-project/cip-kernel/linux-cip
- CIP Documents
 - https://gitlab.com/cip-project/cip-documents
Threat Modelling Tools

- **Draw.io libraries for threat modelling**
 - https://github.com/michenriksen/drawio-threatmodeling

- **OWASP-Threat-Dragon**
 - https://threatdragon.org/login

- **threatspec**
 - https://threatspec.org/

- **pytm**
 - https://github.com/izar/pytm

- **Microsoft Threat Modelling Tool**
CIP Talks at ELCE, and CIP Mini Summit

• October 26
 • CIP Kernel: **Upstream first is our principle**
• October 27
 • CIP Security: **Threat Modelling**
 • **Real time Linux virtualization, Embedded systems building, bridging communities**
• October 28
 • CIP Security: **The international effort to establish Base Layer**
• October 30
 • CIP **Mini-summit**
Please Visit CIP Virtual Booth!

“CIP mini-summit” will be held on Oct. 30th (Frid)
thank you!
Join us
CIP for sustainable Smart Cities with Open Source Software
Question?
Thank you
References

- NIST Special Publication 800-30r1 Guide for Conducting Risk Assessments
 - https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

- NIST Special Publication 800-39 Managing Information Security Risk

- Secure Code, Threat modeling sessions
 - https://www.youtube.com/watch?v=gDtS68DPm6Q