
Embedded Linux Conference Europe 2016

Anatomy of
cross-compilation toolchains

Thomas Petazzoni
free electrons
thomas.petazzoni@free-electrons.com Artwork and Photography by Jason Freeny

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 1/1



Thomas Petazzoni

▶ CTO and Embedded Linux engineer at Free Electrons
▶ Embedded Linux specialists.
▶ Development, consulting and training.
▶ http://free-electrons.com

▶ Contributions
▶ Kernel support for the Marvell Armada ARM SoCs

from Marvell
▶ Major contributor to Buildroot, an open-source, simple

and fast embedded Linux build system
▶ Living in Toulouse, south west of France Drawing from Frank

Tizzoni, at Kernel Recipes
2016

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 2/1

http://free-electrons.com


Disclaimer

▶ I am not a toolchain developer. Not pretending to know everything about
toolchains.

▶ Experience gained from building simple toolchains in the context of Buildroot
▶ Purpose of the talk is to give an introduction, not in-depth information.
▶ Focused on simple gcc-based toolchains, and for a number of examples, on ARM

specific details.
▶ Will not cover advanced use cases, such as LTO, GRAPHITE optimizations, etc.
▶ Will not cover LLVM

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 3/1



What is a cross-compiling toolchain?

▶ A set of tools that allows to build source code into binary code for a target
platform different than the one where the build takes place

▶ Different CPU architecture
▶ Different ABI
▶ Different operating system
▶ Different C library

▶ Three machines involved in the build process
▶ build machine, where the build takes place
▶ host machine, where the execution takes place
▶ target machine, for which the programs generate code

▶ Native toolchain: build == host == target
▶ Cross-compilation toolchain: build == host != target
▶ Corresponds to the --build, --host and --target autoconf configure script

arguments
▶ By default, automatically guessed by autoconf to be for the current machine

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 4/1



Toolchain tuple

▶ autoconf defines the concept of system definitions, represented as tuples
▶ A system definition describes a system: CPU architecture, operating system,

vendor, ABI, C library
▶ Different forms:

▶ <arch>-<vendor>-<os>-<libc/abi>, full form
▶ <arch>-<os>-<libc/abi>

▶ Components:
▶ <arch>, the CPU architecture: arm, mips, powerpc, i386, i686, etc.
▶ <vendor>, (mostly) free-form string, ignored by autoconf
▶ <os>, the operating system. Either none or linux for the purpose of this talk.
▶ <libc/abi>, combination of details on the C library and the ABI in use

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 5/1



Toolchain tuple examples

▶ arm-foo-none-eabi, bare-metal toolchain targeting the ARM architecture, from
vendor foo

▶ arm-unknown-linux-gnueabihf, Linux toolchain targeting the ARM architecture,
using the EABIhf ABI and the glibc C library, from an unknown vendor

▶ armeb-linux-uclibcgnueabi, Linux toolchain targeting the ARM big-endian
architecture, using the EABI ABI and the uClibc C library

▶ mips-img-linux-gnu, Linux toolchain targeting the MIPS architecture, using the
glibc C library, provided by Imagination Technologies.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 6/1



Bare-metal vs. Linux toolchain

▶ Two main values for <os>
▶ none for bare-metal toolchains

▶ Used for development without an operating system
▶ C library used is generally newlib
▶ Provides C library services that do not require an operating system
▶ Allows to provide basic system calls for specific hardware targets
▶ Can be used to build bootloaders or the Linux kernel, cannot build Linux userspace

code
▶ linux for Linux toolchains

▶ Used for development with a Linux operating system
▶ Choice of Linux-specific C libraries: glibc, uclibc, musl
▶ Supports Linux system calls
▶ Can be used to build Linux userspace code, but also bare-metal code such as

bootloaders or the kernel itself

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 7/1



Components

▶ There are four core components in a Linux cross-compilation toolchain
1. binutils
2. gcc
3. Linux kernel headers
4. C library

▶ In addition to these, a few dependencies are needed to build gcc itself.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 8/1



binutils

▶ “collection of binary tools”
▶ Main tools

▶ ld, the linker. Links multiple object files into a shared library, an executable, or
another object file.

▶ as, the assembler. Takes architecture-specific assembler code in text form, and
produces a corresponding object file with binary code.

▶ Debugging/analysis tools and other tools
▶ addr2line, ar, c++filt, gold, gprof, nm, objcopy, objdump, ranlib, readelf, size,

strings, strip
▶ Needs to be configured for each CPU architecture: your native x86 binutils cannot

produce ARM code.
▶ Pretty straightforward to cross-compile, no special dependencies are needed.

./configure --target=arm-buildroot-linux-gnueabihf --with-
sysroot=PATH

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 9/1



gcc

▶ GNU Compiler Collection
▶ Front-ends for many source languages: C, C++, Fortran, Go, etc.
▶ Back-ends for many CPU architectures.
▶ Provides:

▶ The compiler itself, cc1 for C, cc1plus for C++. Only generates assembly code in
text format.

▶ The compiler driver, gcc, g++, which drives the compiler itself, but also the binutils
assembler and linker.

▶ Target libraries: libgcc (gcc runtime), libstdc++ (the C++ library), libgfortran
(the Fortran runtime)

▶ Header files for the standard C++ library.
▶ Building gcc is a bit more involved than building binutils: two steps are needed,

see later.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 10/1



Linux Kernel headers

▶ In order to build a C library, the Linux kernel headers are needed: definitions of
system call numbers, various structure types and definitions.

▶ In the kernel, headers are split between:
▶ User-space visible headers, stored in uapi directories: include/uapi/,

arch/<ARCH>/include/uapi/asm
▶ Internal kernel headers.

▶ Installation takes place using
make ARCH=.. INSTALL_HDR_PATH=... headers_install

▶ The installation includes a sanitation pass, to remove kernel-specific constructs from
the headers.

▶ As of Linux 4.8, installs 756 header files.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 11/1



Linux Kernel headers version

▶ Which version of the kernel headers should be used in a toolchain?
▶ The kernel to userspace ABI is backward compatible.
▶ Therefore, the version of the kernel used for the kernel headers must be the same

version or older than the kernel version running on the target system.
▶ Otherwise the C library might use system calls that are not provided by the kernel.
▶ Examples:

▶ Toolchain using 3.10 kernel headers, running 4.4 kernel on the target → OK
▶ Toolchain using 4.8 kernel headers, running 4.4 kernel on the target → NOK

Linux 3.13.0 headers
$ cat arm-none-linux-gnueabi/libc/usr/include/linux/version.h
define LINUX_VERSION_CODE 199936
#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 12/1



C library

▶ Provides the implementation of the POSIX standard functions, plus several other
standards and extensions

▶ Based on the Linux system calls
▶ Several implementations available:

▶ glibc
▶ uClibc-ng (formerly uClibc)
▶ musl
▶ bionic, for Android systems
▶ A few other more special-purpose: newlib (for bare-metal), dietlibc, klibc

▶ After compilation and installation, provides:
▶ The dynamic linker, ld.so
▶ The C library itself libc.so, and its companion libraries: libm, librt, libpthread,

libutil, libnsl, libresolv, libcrypt
▶ The C library headers: stdio.h, string.h, etc.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 13/1



C library: glibc

▶ GNU C Library
▶ De-facto standard of Linux C libraries
▶ Used in virtually all common desktop/server distributions
▶ Full-featured
▶ Supports for numerous architectures or operating systems
▶ No support for noMMU platforms
▶ No support for static linking
▶ ABI backward compatibility
▶ Almost no configurability
▶ Used to be “too big” for embedded, but no longer necessarily the case.
▶ LGPLv2.1 or later
▶ https://www.gnu.org/software/libc/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 14/1

https://www.gnu.org/software/libc/


C library: uClibc/uClibc-ng

▶ Started in 2000
▶ High-level of configurability
▶ Supports many architectures, include some not supported by glibc
▶ Supports only Linux as operating system
▶ No ABI backward compatibility
▶ Supports numerous no-MMU architectures: ARM noMMU, Blackfin, etc.
▶ No longer related to uClinux
▶ Support for static linking
▶ Original uClibc project dead (last release in May 2012), but the uClibc-ng fork is

very active and is the de-facto replacement.
▶ LGPLv2.1
▶ http://uclibc-ng.org/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 15/1

http://uclibc-ng.org/


C library: musl

▶ Started in 2011
▶ MIT licensed
▶ Very active development
▶ Support for ARM, ARM64, i386, Microblaze, MIPS(64), OpenRisc, PowerPC(64),

SuperH, x86-4
▶ Recently, noMMU support was added for SuperH2, for the J-core Open

Processor
▶ No configurability
▶ Small, even smaller than uClibc, especially for static linking scenarios
▶ Strict conformance to standards (stricter than glibc, uClibc), causes a few build

issues with a number of packages
▶ Nice comparison of the three main C libraries:

http://www.etalabs.net/compare_libcs.html
▶ http://www.musl-libc.org/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 16/1

http://www.etalabs.net/compare_libcs.html
http://www.musl-libc.org/


C library: size comparison

glibc uclibc musl
ld, dynamic linker 121 KB 25 KB N/A

libc 878 KB 286 KB 437 KB
libcrypt 30 KB 17 KB N/A
libdl 9.5 KB 9 KB N/A
libm 414 KB 37 KB N/A

libnsl 54 KB 4.7 KB N/A
libnss_dns 14 KB N/A N/A
libnss_files 30 KB N/A N/A
libpthread 105 KB 76 KB N/A
libresolv 54 KB 4.7 KB N/A

librt 22 KB 13 KB N/A
libutil 9.5K 4.7 KB N/A
TOTAL 1741 KB 477 KB 437 KB

ARM Cortex-A9 toolchain built with the Thumb-2 instruction set, using Buildroot. gcc 4.9, binutils 2.26, musl 1.1.15, glibc 2.23, uclibc-ng 1.0.17

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 17/1



gcc dependencies

▶ Several math libraries are needed to build gcc
▶ They are compiled for the host machine, i.e they are not needed on the target

▶ mpfr, multiple-precision floating-point computations. Used since gcc 4.3 to evaluate
and replace at compile-time calls to built-in math functions having constant
arguments with their mathematically equivalent results

▶ gmp, dependency of mpfr
▶ mpc, for computation of complex numbers. Used since gcc 4.5 to evaluate calls to

complex built-in math functions having constant arguments and replace them at
compile time with their mathematically equivalent result

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 18/1



Overall build process

▶ The build process for a regular Linux cross-compilation toolchain is in fact fairly
easy:

1. Build binutils
2. Build the dependencies of gcc: mpfr, gmp, mpc
3. Install the Linux kernel headers
4. Build a first stage gcc: no support for a C library, support only for static linking
5. Build the C library using the first stage gcc
6. Build the final gcc, with C library and support for dynamic linking

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 19/1



Overall build process: example in Buildroot

toolchain toolchain-buildroot host-gcc-final glibc

host-gawk

host-gcc-initial

linux-headers

host-binutils

host-mpc host-mpfr host-gmp host-m4

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 20/1



Concept of sysroot

▶ The sysroot is the the logical root directory for headers and libraries
▶ Where gcc looks for headers, and ld looks for libraries
▶ Both gcc and binutils are built with --with-sysroot=<SYSROOT>

▶ The kernel headers and the C library are installed in <SYSROOT>
▶ If the toolchain has been moved to a different location, gcc will still find its

sysroot if it’s in a subdir of --prefix
▶ --prefix=/home/thomas/buildroot/arm-uclibc/host/usr
▶ --with-sysroot=/home/thomas/buildroot/arm-uclibc/host/usr/arm-

buildroot-linux-uclibcgnueabihf/sysroot

▶ Can be overridden at runtime using gcc’s --sysroot option.
▶ The current sysroot can be printed using the -print-sysroot option.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 21/1



Multilib toolchains (1)

▶ Most toolchains provide a single sysroot with the C library and gcc runtime
libraries

▶ These libraries, built for the target, are optimized for a specific architecture
variant and ABI

▶ Need to have one toolchain for each architecture variant or ABI
▶ Multilib toolchains contain multiple sysroot, each having a version of the target

libraries for different architecture/ABI variants.
▶ Example of the Sourcery CodeBench ARM toolchain:

$ arm-none-linux-gnueabi-gcc -print-multi-lib
.;
armv4t;@march=armv4t
thumb2;@mthumb@march=armv7-a

▶ Three sysroots: ARMv5, ARMv4 and ARMv7 Thumb-2
free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 22/1



Multilib toolchains (2)

▶ The compiler automatically selects the right sysroot depending on the gcc flags:
$ arm-none-linux-gnueabi-gcc -march=armv5te -print-sysroot
.../bin/../arm-none-linux-gnueabi/libc
$ arm-none-linux-gnueabi-gcc -march=armv4t -print-sysroot
.../bin/../arm-none-linux-gnueabi/libc/armv4t
$ arm-none-linux-gnueabi-gcc -march=armv7-a -mthumb -print-sysroot
.../bin/../arm-none-linux-gnueabi/libc/thumb2

▶ Each sysroot has a different library variant:
$ readelf -A arm-none-linux-gnueabi/libc/lib/ld-2.18.so
Tag_CPU_name: "5TE"
Tag_CPU_arch: v5TE

$ readelf -A arm-none-linux-gnueabi/libc/armv4t/lib/ld-2.18.so
Tag_CPU_name: "4T"
Tag_CPU_arch: v4T

$ readelf -A arm-none-linux-gnueabi/libc/thumb2/lib/ld-2.18.so
Tag_CPU_name: "7-A"
Tag_CPU_arch: v7
Tag_THUMB_ISA_use: Thumb-2

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 23/1



Toolchain contents

Cross-compilation toolchain generated by Buildroot
▶ arm-buildroot-linux-uclibcgnueabihf/

▶ bin/

▶ include/

▶ lib/

▶ libexec/

▶ share/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Toolchain contents
▶ arm-buildroot-linux-uclibcgnueabihf/

▶ bin/
▶ Limited set of binutils programs, without their cross-compilation prefix. Hard links to

their counterparts with the prefix. This is where gcc finds them.
▶ include/c++/4.9.4/

▶ Headers for the C++ standard library, installed by gcc
▶ Interestingly, they are not part of the sysroot per-se.

▶ lib/
▶ The gcc runtime libraries, built for the target
▶ libatomic, provides a software implementation of atomic built-ins, when needed
▶ libgcc, the main gcc runtime (optimized functions, 64-bit division, floating point

emulation)
▶ libitm, transactional memory library
▶ libstdc++, standard C++ library
▶ libsupc++, subset of libstdc++ with only the language support functions

▶ sysroot/
▶ lib/, usr/lib/: C library and gcc runtime libraries (shared and static)
▶ usr/include/, Linux kernel and C library headers

▶ bin/
▶ include/
▶ lib/
▶ libexec/
▶ share/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Toolchain contents

▶ arm-buildroot-linux-uclibcgnueabihf/
▶ bin/

▶ arm-buildroot-linux-uclibcgnueabihf- prefixed tools
▶ From binutils: addr2line, ar, as, elfedit, gcov, gprof, ld, nm, objcopy, objdump,

ranlib, readelf, size, strings, strip
▶ From gcc: c++ (same as g++), cc (same as gcc), cpp, g++, gcc, gcc-ar, gcc-nm,

gcc-ranlib
▶ The gcc-{ar,nm,ranlib} are wrappers for the corresponding binutils program, to

support Link Time Optimization (LTO)
▶ include/

▶ lib/

▶ libexec/

▶ share/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Toolchain contents

▶ arm-buildroot-linux-uclibcgnueabihf/

▶ bin/
▶ include/

▶ Headers of the host libraries (gmp, mpfr, mpc)
▶ lib/

▶ libexec/

▶ share/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Toolchain contents

▶ arm-buildroot-linux-uclibcgnueabihf/

▶ bin/

▶ include/
▶ lib/

▶ gcc/arm-buildroot-linux-uclibcgnueabihf/4.9.4/
▶ crtbegin*.o, crtend*.o, object files handling constructors/destructors, linked into

executables
▶ include/, headers provided by the compiler (stdarg.h, stdint.h, stdatomic.h, etc.)
▶ include-fixed/, system headers that gcc fixed up using fixincludes
▶ install-tools/, also related to the fixincludes process
▶ libgcc.a, libgcc_eh.a, libgcov.a, static variants of the gcc runtime libraries

▶ ldscripts/, linker scripts provided by gcc to link programs and libraries
▶ Host version of gmp, mpfr, mpc, needed for gcc

▶ libexec/

▶ share/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Toolchain contents

▶ arm-buildroot-linux-uclibcgnueabihf/

▶ bin/

▶ include/

▶ lib/
▶ libexec/

▶ gcc/arm-buildroot-linux-uclibcgnueabihf/4.9.4/
▶ cc1, the actual C compiler
▶ cc1plus, the actual C++ compiler
▶ collect2, program from gcc collecting initialization functions, wrapping the linker
▶ install-tools/, misc gcc related tools, not needed for the compilation process
▶ liblto_plugin.so.0.0.0, lto-wrapper, lto1, related to LTO support (outside of the

scope of this talk)

▶ share/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Toolchain contents

▶ arm-buildroot-linux-uclibcgnueabihf/

▶ bin/

▶ include/

▶ lib/

▶ libexec/
▶ share/

▶ documentation (man pages and info pages)
▶ translation files for gcc and binutils

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 24/1



Architecture tuning

▶ gcc provides several configure-time options to tune for a specific
architecture/CPU variant: --with-arch, --with-cpu, --with-abi, --with-fpu

▶ These define the default architecture/CPU variant for which gcc will generate
code.

▶ They can be overridden at runtime using the -march, -mcpu, -mabi, -mfpu
options.

▶ However, be careful: parts of the toolchain are built for the target!
▶ The gcc runtime libraries
▶ The C library, dynamic linker, and startup code

▶ They are built together with the rest of the toolchain, so it’s important to know
with what optimization level they were built!

▶ Passing -march=armv5te is not sufficient to make your binary work on ARMv5 if
your toolchain originally targets ARMv7.

▶ Read the gcc documentation, section Machine-dependent options to get the
complete list of possible values.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 25/1



ABI: definition

▶ ABI = Application Binary Interface
▶ From the point of a toolchain, the ABI defines:

▶ How function calls are made (so-called calling convention)
▶ How arguments are passed: in registers (which ones?), on the stack, how 64-bits

arguments are handled on 32 bits architectures
▶ How the return value is passed

▶ Size of basic data types
▶ Alignment of members in structures
▶ When there is an operating system, how system calls are made

▶ Object files from different ABIs cannot be linked together (especially important if
you have pre-built libraries or executables!)

▶ For a given CPU architecture, there can potentially be an infinite number of ABIs:
ABIs are just specifications on how to use the CPU architecture

▶ Need to understand the ABIs for each architecture.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 26/1



ABI: example of ARM 32

▶ OABI: obsolete ABI. Forced the use of hard-float instructions, which required
emulation of floating-point operations in the kernel. No longer supported
anywhere.

▶ EABI, standardized by ARM. Allows mixing hard-float code with soft-float code.
Floating point arguments passed in integer registers.

▶ Hard-float code: uses floating point instructions directly.
▶ Soft-float code: emulates floating point instructions using a userspace library

provided by gcc
▶ EABIhf, also standardized by ARM. Requires a floating point unit: only

hard-float code. Floating point arguments passed in floating point registers.
▶ gcc options

▶ EABI soft-float: -mabi=aapcs-linux -mfloat-abi=soft
▶ EABI hard-float: -mabi=aapcs-linux -mfloat-abi=softfp
▶ EABIhf: -mabi=aapcs-linux -mfloat-abi=hard

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 27/1



Difference between toolchain and SDK

▶ Toolchain: just the compiler, binutils and C library
▶ SDK: a toolchain, plus a number (potentially large) of libraries built for the target

architecture, and additional native tools helpful when building software.
▶ Build systems such as OpenEmbedded or Yocto can typically:

▶ Use an existing toolchain as input, or build their own toolchain
▶ In addition to producing a root filesystem, they can also produce a SDK to allow

application developers to build applications/libraries for the target.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 28/1



How to get a cross-compilation toolchain

▶ Pre-built
▶ From your distribution. Ubuntu and Debian have numerous cross-compilers readily

available.
▶ From various organization: Linaro provides ARM and AArch64 toolchains, Mentor

provides a few free Sourcery CodeBench toolchains, Imagination provides MIPS
toolchains, etc.

▶ Built it yourself
▶ Crosstool-NG, tool specialized in building cross-compilation toolchain. By far the

most configurable/versatile.
▶ Embedded Linux build systems generally all know how to build a cross-compilation

toolchain: Yocto/OpenEmbedded, Buildroot, OpenWRT, etc.

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 29/1



References

▶ Crosstool-NG documentation,
https://github.com/crosstool-ng/crosstool-ng/blob/master/docs/

▶ GCC documentation, https://gcc.gnu.org/onlinedocs/
▶ Binutils documentation, https://sourceware.org/binutils/docs/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 30/1

https://github.com/crosstool-ng/crosstool-ng/blob/master/docs/
https://gcc.gnu.org/onlinedocs/
https://sourceware.org/binutils/docs/


Thanks for your attention!

Questions?

Thomas Petazzoni
thomas.petazzoni@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2016/elce/petazzoni-toolchain-anatomy/

free electrons - Embedded Linux, kernel, drivers - Development, consulting, training and support. http://free-electrons.com 31/1

http://free-electrons.com/pub/conferences/2016/elce/petazzoni-toolchain-anatomy/

