
Presented by 

Sergio Prado

Introduction to Embedded

Linux Security

Embedded Linux Conference North America 2020



$ WHOAMI

✗ Embedded software developer for more than 20 years.

✗ Team Lead at Toradex.

✗ Consultant and trainer at Embedded Labworks (e-labworks.com/en).

✗ Contributor of some open source projects, including Buildroot, Yocto 
Project and the Linux kernel.

✗ Sometimes write technical stuff at embeddedbits.org.

https://e-labworks.com/en
https://embeddedbits.org/


INTRODUCTION TO SECURITY

The computer security field is really
about managing risks!

C
on

fid
en

tia
lit

y

Availability

Integrity



SECURITY CONCEPTS I

✗ Owners: those who benefits from the product (user, manufacturer, 
business owner, etc).

✗ Assets: anything that has value to the owners (data, code, reputation, etc).

✗ Threats: anything that are capable of acting against an asset in a manner 
that can result in harm.



SECURITY CONCEPTS II

✗ Threat actors (or threat agents): person or thing that can manifest a threat 
(malicious hacker, government, etc).

✗ Attack vectors (or attack surface): methods or pathways used by a threat 
actor to access or penetrate the target system.

✗ Vulnerabilities: weakness which can be exploited by a threat actor.



SECURITY CONCEPTS III

Source: Enisa - Hardware Threat Landscape and Good Practice Guide 



THREAT MODELING

✗ So security is all about identifying threats to minimize risks of assets being 
compromised.

✗ Threat modeling is a process where potential threats can be identified, 
enumerated, and mitigations can be prioritized.

✗ It is basically a risk assessment process where you evaluate the value of 
your assets and the cost to protect them.

✗ The result of threat modeling is the threat model of your product.



THREAT MODELING

Assets Threats/Risks Mitigation Threat model

Threat modeling methodologies

(STRIDE/DREAD, CIA, CVSS)

Attack surface



STRIDE

Source: https://allabouttesting.org/stride-acronym-of-threat-modeling-system/

https://allabouttesting.org/stride-acronym-of-threat-modeling-system/


DREAD

Source: https://www.slideshare.net/SecurityInnovation/threat-modeling-to-reduce-software-security-risk

https://www.slideshare.net/SecurityInnovation/threat-modeling-to-reduce-software-security-risk


THREAT MODEL EXAMPLE

Threat Score Mitigation

Any user is able to login in the admin web 
page and change device configuration

14 Implement a web-based authentication 
mechanism

A network application could be exploited 
to run unauthorized code

13 Drop application privileges and run it inside a 
container

With physical access, a threat actor could 
extract user data

12 Use encryption to protect user data

Using a MitM attack, a threat actor could 
change the firmware image during the 
update process

11 Check the signature of the update image

A threat actor could execute DoS attacks 
on the device

11 Create firewall rules to avoid or minimize DoS 
attacks' impact

...



SECURE BOOT CONCEPTS

✗ The objective of a secure boot is to protect the integrity and authenticity of 
the code.

✗ Why? To make sure the binaries you're running were built by a trustworthy 
person or company!

✗ It has costs like key management, boot time, harder to develop on the 
platform, etc.



HOW DOES IT WORK?

✗ Everything is based on the verification of digital signatures (no encryption 
involved).

✗ The authenticity of every component of the system should be verified 
(bootloader, kernel, rootfs, etc).

✗ That means the first element in the boot process authenticates the second, 
that authenticates the third, etc.

✗ This is called a chain-of-trust.



HOW DOES IT WORK?

ROM code Bootloader Linux kernel RootFS
signature

verification
signature

verification
signature

verification
pubkey1 pubkey2 pubkey3



HOW TO IMPLEMENT IT?

✗ Everything starts in the ROM code inside the SoC (Root of Trust).

✗ The ROM code will check the signature of the bootloader.
✗ It needs a way to store the public key(s) (e.g. OTP fuses).

✗ To make it less expensive, usually only the hash of the public key is stored.

✗ The Bootloader (e.g. U-Boot) will check the integrity of the FIT image.
✗ The FIT image is a container for multiple binaries with hashing and signature support.

✗ It contains the Linux Kernel image, device tree files and an initial ramdisk.



HOW TO IMPLEMENT IT?

✗ The ramdisk will have the logic to verify and mount the rootfs using the dm-verity 
kernel module and the veritysetup tool.
✗ The device-mapper verity provides integrity checking of block devices.

✗ It requires a read-only rootfs (squashfs can be a good solution).

✗ The rootfs partition should generated with dm-verity support.
✗ Another approach would be IMA or dm-integrity for read-write filesystems.

✗ This is only one example of secure boot implementation, although it could be 
applied to a different set of boards and ARM SoCs.



SECURE BOOT ON i.MX6

i.MX6
U-Boot

Linux kernel

RootFS (read only)

signature
verification

signature
verification

signature
verification

pubkey1 hash

pubkey2

pubkey3

OTP fuses
U-Boot signature 

and certificate

Device trees

Ramdisk

FIT Image

NXP custom tool (Code Signing Tool)

Buildsystem (OE or Buildroot)

veritysetup



OOPS...

✗ Nothing is 100% secure!

✗ Secure boot vulnerabilities in ROM code of i.MX6, i.MX50, i.MX53, i.MX7, 
i.MX28 and Vybrid families publicly disclosed July 17th, 2017.

https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.html

https://community.nxp.com/docs/DOC-334996

✗ The vulnerabilities were fixed with new silicon.

https://blog.quarkslab.com/vulnerabilities-in-high-assurance-boot-of-nxp-imx-microprocessors.html
https://community.nxp.com/docs/DOC-334996


CODE AND DATA ENCRYPTION

✗ While secure boot ensures authenticity, it does not protect the device from being 
counterfeited or prevent threat actors from extracting code or data from the device.

✗ If you want to protect your intellectual property or ensure data confidentiality, you will 
need to use encryption.

✗ It not common to encrypt the code on an embedded Linux system (but you could want to 
encrypt your applications).
✗ Be aware of GPLv3 (Tivoization).

✗ On the other hand, application or user data confidentiality and protection might be a 
requirement, for example on medical devices.



CODE AND DATA ENCRYPTION

✗ There are basically two main approaches to file encryption in Linux: full disk 
encryption and file-based encryption.

✗ A full disk encryption provides encryption at the block level and the whole disk or 
a disk partition is encrypted.
✗ dm-crypt is the Linux kernel's device mapper crypto target.

✗ A file-based encryption provides encryption at the file system level, where each 
directory may be separately and optionally encrypted with a different key.
✗ fscrypt is an API available on some filesystems like EXT4, UBIFS and F2FS.

✗ eCryptFS is implemented as a layer that stacks on top of an existing filesystem.



SECURE BOOT WITH ENCRYPTION

i.MX6
U-Boot

Linux kernel

rootfs
(squashfs, ro)

signature
verification

signature
verification

signature
verification

pubkey1 hash

pubkey2

pubkey3

OTP fuses
U-Boot signature 

and certificate

Device trees

Ramdisk

FIT Image

NXP custom tool (Code Signing Tool)

veritysetup

data
(ext4, rw)

ecryptfsecryptfs-utils



WHERE IS THE KEY?

Source: https://bunniefoo.com/nostarch/HackingTheXbox_Free.pdf 

https://bunniefoo.com/nostarch/HackingTheXbox_Free.pdf


PRIVATE KEY STORAGE

✗ A symmetric-key algorithm is usually used for encryption, so you have to store the 
private key somewhere in the system to decrypt the data.

✗ And the protection of the encrypted data is as secure as the protection of the key 
to decrypt it!

✗ On a desktop or smartphone, the key used to encrypt the filesystem is derived 
from a user password (passphrase) entered interactively.

✗ On an embedded system, it should be stored encrypted in the filesystem or in a 
secure storage isolated from the system.



KEY STORAGE ON i.MX PROCESSORS

✗ On i.MX, each processor has a unique master key (pre-programmed by NXP) that 
can only be accessed by the CAAM (Cryptographic Accelerator and Assurance 
Module) module.

✗ So the CAMM module can be used to encrypt the filesystem encryption key with 
the unique processor master key (this would have to be done during 
manufacturing).

✗ The encrypted key could be stored in the boot or rootfs partition.

✗ During boot, the CAMM module would be used to decrypt the key and restore the 
plain key that would be used to decrypt the filesystem.



KEY STORAGE ON EXTERNAL DEVICES

✗ If you don’t have security features in your processor, you could achieve the same 
results with an external hardware like a Secure Element or a TPM device.

✗ These external devices usually provide secure storage, so they could be used to 
store a master key that could be used to encrypt/decrypt the filesystem encryption 
key.

✗ These devices also offer a lot of security features like random number generation, 
hash calculation, crypto and signing functions, etc.

✗ Also, a TEE (Trusted Execution Environment) could also be used to securely store 
the key (we'll talk about TEE later in this presentation).



SECURE ELEMENT

✗ A Secure Element is a secure computing system.

✗ It is basically a secure storage with its own secure applications (usually 
implemented using Java Card, but not necessary).

✗ What a secure element does is very open and depends on the 
implementation, but most of them implement Public-Key Cryptography 
Standard 11 (PKCS#11).

✗ Examples of Secure Elements are smart-cards and SIM-cards.



TPM

✗ A TPM (Trusted Platform Module) is a specification and an international 
standard (ISO/IEC 11889).

✗ TPM is not a Secure Element, although it could be implemented inside 
one.

✗ Can be implemented in hardware or software, but most implementations 
are in hardware.

✗ It provides a set of limited security features defined by the standard, 
including secure storage and cryptographic functions.



SECURE CODING

✗ You could protect your code and data with encryption, but if you running an 
application with bugs that could be exploited, your assets are still at risk 
anyway.

✗ If an application has attack vectors (user input, configuration files, network 
communications, etc), a bug could be used to exploit the application.

✗ Especially programs written in memory unsafe languages like C/C++, bugs 
like buffer overflows could be used in attacks like stack smashing and 
format strings.



CVE-2019-14835

✗ A buffer overflow flaw was found, 
in versions from 2.6.34 to 5.2.x, 
in the way Linux kernel's vhost 
functionality that translates 
virtqueue buffers to IOVs, logged 
the buffer descriptors during 
migration. A privileged guest user 
able to pass descriptors with 
invalid length to the host when 
migration is underway, could use 
this flaw to increase their 
privileges on the host.

Source: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14835

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14835


STATIC CODE ANALYSIS

✗ Always use static analysis tools to check your code and don't ignore compiler 
warnings.

✗ Static analysis tools are able to analyze the source code (without running the 
program) to find problems before they happen. 

✗ These tools can find program errors like null pointer dereferences, memory leaks, 
integer overflow, out of bounds access, use before initialization, etc!

✗ There are many good open source (cppcheck, splint, clang, etc) and commercial 
(Coverity, PC-Lint, etc) options for static code analysis.



RUNTIME PROTECTIONS

✗ Build the system with protections (ASLR, stack canaries, electric fence, ASan, 
etc) and do dynamic analysis of you programs!

✗ ASLR (Address Space Layout Randomization) is a computer security technique 
that randomly arranges the address space positions of key data areas of a 
process (text, stack, heap, libraries, etc).

✗ AddressSanitizer (ASan) is an instrumentation tool created by Google security 
researchers to identify memory access problems in C and C++ programs.

✗ Valgrind could help to detect memory related problems like leaks and data races.



FUZZING TOOLS

✗ Test the system with fuzzing tools!

✗ Fuzzing or fuzz testing is an automated software testing technique that 
involves providing invalid, unexpected, or random data as inputs to a 
program. 

✗ The program is then monitored for exceptions such as crashes, failing built-in 
code assertions, or potential memory leaks.

✗ A lot of free and open source fuzzing tools are available, including AFL 
(american fuzzing loop) and syzkaller (Linux kernel fuzzer). 



PERMISSIONS

✗ One way to mitigate vulnerabilities in programs is not running them with root 
(superuser) privileges!

✗ Also, design a system where you don't need a user logged as root, and 
disable root login.

✗ If you have an external connection to the system, use public-key 
authentication (if possible) and a strong password if needed.

✗ Always design with the principle of least privilege in mind!



ACCESS CONTROL

✗ But the problem is that sometimes we need "root powers" to execute some 
privileged operation like set the system clock or use RAW sockets.

✗ And then we need to run our program as root, right?

✗ Wrong! We have some options for fine-grained control over processes 
permissions.

✗ One of the solutions is called Linux capabilities.



LINUX CAPABILITIES

✗ Linux divides the privileges associated with superuser into distinct units, known as capabilities, 
which can be independently enabled and disabled.

✗ So the idea is to write a program that will run as root, but enable just the capabilities it needs to 
do its job.

$ getcap /usr/bin/ping
/usr/bin/ping = cap_net_raw+ep

✗ While capabilities provide a subset of the available root privileges to a process, it is not so 
flexible.

✗ If you need more control over permissions, you should think about using a type of access 
control called MAC (Mandatory Access Control).



DAC vs MAC

✗ Linux traditionally supports Discretionary Access Control (DAC).

✗ DAC is a type of access control where the access to objects is restricted based on 
the identity of subjects and/or groups to which they belong ("user" and "group" flags).

✗ Another type of access control is called Mandatory Access Control (MAC).

✗ MAC refers to a type of access control where the operating system constrains the 
ability of a subject to access or perform some sort of operation on an object.

✗ MAC is implemented in the kernel via Linux Security Modules (LSM).



LINUX SECURITY MODULES

✗ LSM is a framework that allows the Linux kernel to support a variety of computer security 
models.

✗ The most know Linux security modules that implement MAC are AppArmor, SELinux, 
Smack and TOMOYO.

✗ SELinux is one of the most popular (and complex) MAC implementation, developed 
initially by NSA and today used in bigger projects like Android and Fedora.

✗ AppArmor is also a popular and more user-friendly MAC implementation, supported by 
Canonical and used in some Linux distributions like Ubuntu and Debian.

✗ Although our objective isn’t to go over the details on SELinux or AppArmor, you should 
think about using a MAC if you need fine-grained control over process permissions.



APPLICATION SANDBOXING

✗ Sometimes, restricting permissions is not enough to protect the system from a 
vulnerable application, and to improve security, sandboxing could be used to 
isolate applications from the rest of the system.

✗ Possibly the oldest sandboxing tool available in Linux is chroot, but it’s not very 
useful in terms of security because it will only isolate the filesystem.

✗ Virtualization is another form of application sandboxing in Linux, but it is too 
costly, especially in embedded systems.

✗ Nowadays, two possible solutions to sandbox applications in embedded Linux are 
Containers and Trusted Execution Environments (TEE).



LINUX CONTAINERS

✗ A Linux container is a minimal filesystem with only the required software 
components to run a specific application or group of applications.

✗ Using some kernel features, the container will "run" completely isolated from 
the rest of the system (only the kernel is shared).
✗ namespaces make it possible to isolate the execution of a process on Linux 

(PID, users, network connections, mount points, etc).
✗ cgroups allows to partition system resources (CPU, memory, I/O) by process or 

group of processes.

✗ seccomp allows to limit the system calls that a process can do.



LINUX CONTAINERS



CONTAINERS AND SECURITY

✗ Several tools are available to manage containers in Linux, including LXC, 
Systemd-nspawn, Podman and Docker.

✗ A container is not secure by itself, but if properly configured, we can limit the 
permissions of each process inside the container and control the 
communication between them, reducing the attack surface and improving the 
security of the product.

✗ Using in conjunction with a security module (e.g. AppArmor, SELinux), we can 
greatly enhance the security of the system.



TEE

✗ In a system based on containers, if the kernel is compromised, all the operating 
system is at risk. A Trusted Execution Environment could prevent that.

✗ A Trusted Execution Environment (TEE) is an environment where the code executed 
and the data accessed is isolated and protected in terms of confidentiality (no one 
have access to the data) and integrity (no one can change the code and its behavior).

✗ A lot of devices around us make use of a Trusted Execution Environment, including 
smartphones, set-top-boxes, videogame consoles and Smart TVs.

✗ TEE could be a good solution to store and manage encryption keys, store and 
manage credentials and sensitive data, and protecting digital copyrighted information.



TEE

✗ In a system with a TEE, we have untrusted applications (UAs) running on a 
Rich Execution Environment (REE) and trusted applications (TAs) running on 
a Trusted Execution Environment (TEE).

✗ Only trusted applications running on a TEE (Secure World) have complete 
access to the main processor, peripherals and memory.

✗ Hardware isolation protects TAs from untrusted applications running on the 
main operating system (Non-Secure World).



TEE



TEE IMPLEMENTATION

✗ We need hardware support to implement a TEE, so we can partition and 
isolate the hardware (busses, peripherals, memory regions, interrupts, etc) to 
prevent untrusted applications from accessing protected resources.

✗ Most modern processors have this feature build-in (e.g. ARM's TrustZone, 
RISC-V's MultiZone, Intel SGX).

✗ There are some commercial TEE implementations, including Kinibi, QSEE 
and iTrustee.

✗ We have also some open source implementations like Trusty and OP-TEE.



UPDATE SYSTEM AND SECURITY

✗ Despite all mitigations we have seen so far, an operating system with millions 
of lines of code will certainly have bugs and vulnerabilities!

✗ Having an update system in place is very important for embedded systems 
and connected devices where security is a key feature of the product.

✗ The update system should be designed in the early stages of the product 
development, with OTA features if possible.

✗ What is more costly: invest time to implement a good update system or recall 
all units to fix a bug in the software of your product?



UPDATE CHALLENGES

✗ Security (authenticity, confidentiality).

✗ Integrity.

✗ Atomic/power fail safe.

✗ Bandwidth.

✗ Speed/downtime.

✗ Rollback.



UPDATE STRATEGIES

✗ Application-based: not maintainable!

✗ Package-based: update images are small but the updates are non-atomic 
and dependencies could be a problem.

✗ Image-based: using the A/B mechanism is a very good solution, the problem 
could be bandwidth and storage size.

✗ Container-based: could be the best of both worlds. Makes it easier to 
implement an update system that is atomic, power fail safe, use less 
bandwidth, faster, with minimal downtime and rollback capable.



NETWORK SECURITY

✗ If you are doing OTA updates, your device has a network connection (Wi-Fi, 
Ethernet, etc).

✗ And if your device has a network connection, you should care about network 
security!

✗ The first rule is to decrease the attack surface. For example:
✗ Close all ports not used/needed (tools like nmap can help).
✗ Disable all protocols not used (e.g IPv6, PPP, etc).



NETWORK SECURITY

✗ Then make it harder to hack your device! For example:
✗ Create firewall rules (prevent inbound/outbound connections, protect against 

DoS attacks, prevent port scanning, etc).  
✗ Use a network IDS such as snort for intrusion protection/detection.
✗ Communicate with external devices using a secure connection (VPN, 

reverse SSH, TLS, HTTPS, etc).
✗ Rate limit logins to services (ssh, web, etc) to prevent brute-force attacks.



DEFENSE IN DEPTH!

encryption

data

TPM

crypto keys

code

secure boot

static code analysis

runtime protections

MAC

container

TEEnetwork hardening

Update your 
code!



SECURITY "GENERAL RULES"

✗ Defense in depth: have always more than one layer or type of defense.

✗ Security involves all levels of the system.

✗ Least privilege principle: do not give any more privileges than absolutely 
necessary to do the required job.

✗ Obfuscation or "obscurity" just doesn't work.

✗ There is no such thing as a system 100% secure.
✗ Be aware that an attacker needs only to find one issue!



DESIGN FOR SECURITY

✗ Design with security in mind and be aware of the trade-offs (a system should 
be “secure enough”).

✗ Identify assets, threats, attack vectors and mitigate risks.

✗ Follow good security practices, know the techniques and tools available and 
use them when needed.

✗ Have a good update system, monitor software vulnerabilities (CVEs) and 
patch the system.



Sergio Prado
sergio@embeddedbits.org

https://twitter.com/sergioprado
https://www.linkedin.com/in/sprado

Thank you!

Q&A

mailto:sergio@embeddedbits.org
https://twitter.com/sergioprado
https://www.linkedin.com/in/sprado

	Slide267
	Slide271
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide265

