
Transactional Device Tree & Overlays
Making Reconfigurable Hardware Work

Pantelis Antoniou <pantelis.antoniou@konsulko.com>

mailto:pantelis.antoniou@konsulko.com

Describing Hardware

Ê Platforms get increasingly more complex.

Ê ARM based systems are even more complex than ever.

Ê Platform data not cutting it anymore.

Ê Enter Device Tree.

Ê Originally on PowerPC, now on ARM+everything else besides
x86.

Ê X86 left out? Maybe not.

2

Device Tree (vanilla flavor)

Ê According to ePAPR “Describes system hardware”

Ê "The Device Tree is a data structure for describing hardware.
Rather than hard coding every detail of a device into an
operating system, many aspect of the hardware can be described
in a data structure that is passed to the operating system at boot
time."

Ê Tree structure

Ê Describes information that can't be dynamically determined by
running software

3

Device Tree complaining

Ê A popular pass-time.

Ê “And for whatever your part is in the BBB device tree mess, I hope
sincerely that you someday acquire enough wisdom to feel ashamed of
what you did. Really. Okay, I flamed.”

Ê Nuggets of truth

Ê One more language to learn (dts) and first timers find it complex.

Ê Purely data driven, make it hard to wrap around old platform data +
callback uses.

Ê No syntax checks at compile time.

Ê Not every hardware piece can be statically defined at boot time.

4

Bare Beaglebones

Ê BeagleBone is a low-cost, community-supported development
platform for developers and hobbyists.

Ê CPU: AM335x 1GHz ARM® Cortex-A8

Ê Memory: 512MB

Ê A lot of standard interfaces (USB Host/Client, Ethernet, HDMI)

Ê Build your own stuff and connect them using the 2x46 pin
connectors (passthrough) – capes.

Ê Lots of capes already available.

5

Beaglebone and the Device Tree

Ê Capes are identified using an onboard EEPROM.

Ê No way to support this scheme using static Device Tree.

Ê Trying to do Device Tree blob mangling in the bootloader is
quite difficult (and it doesn’t work with stacked capes).

Ê A method to dynamically alter the live Device Tree according to
the probed cape required.

Ê Opening a can of worms...

6

Intermission

Ê Beaglebone's capes are not unique.

Ê Rasperry Pi (HAT specification).

Ê FPGAs can instantiate different peripherals according to the
bitstream loaded.

Ê The view that hardware is something static is outdated.
Hardware is software nowadays.

Ê Friends don't let friends (hardware hackers) use Arduino – but
Linux is just too hard for mostly hardware hackers (write a
kernel driver to interface to a LED?).

7

Going down in flames

Ê 31 Oct 2012: “Capebus; a bus for SoCs using simple expansion
connectors”

Ê Not a bus!

Ê Booing from the peanut gallery.

Ê They were right.

Ê Back to the drawing board.

8

CONFIG_OF_DYNAMIC

Ê Allows modification of the Live Device Tree at runtime.

Ê Not very widely used until now – only on Power.

Ê Destructive editing of the live tree

Ê Non atomic

Ê Changes cannot be reverted

Ê No connection to the bus driver model; changes to the live tree
do not get reflected.

Ê Part of the puzzle, but not enough as it was.

9

Part 1: Reworking OF_DYNAMIC

Ê /proc → /sys (gcl)

Ê struct device_node now a kobj (gcl)

Ê drivers/of/dynamic.c

Ê Semantics of the of_reconfig notifiers have changed.

Ê Major new user is dt selftests. Test case data dynamically inserted
(/me nags about how).

Ê Already accepted in mainline (3.17)

10

Part 2: Dynamic Resolution

/* foo.dts */

/ {

 bar = <&FOO>; /* compiles to bar = <1>; */

 FOO: foo { }; /* dtc assigns value of 1 to foo phandle */

};

/* qux.dts */

/ {

 qux = <&BAZ>; /* compiles to qux = <1>; */

 quux = <&FOO>; /* ??? Only possible to resolve on runtime */

 BAZ: baz { }; /* dtc assigns value of 1 to baz phandle */

};

11

Resolving phandles

Ê Phandles are pointers to other parts in the tree. For example
pinmuxing, interrupt-parent etc.

Ê Phandles are internally represented by a single 32 scalar value
and are assigned by the DTC compiler when compiling

Ê Extension to the DTC compiler required, patchset already in v2,
minor rework is required.

Ê “dtc: Dynamic symbols & fixup support (v2)”

12

Changes made to the DT Compiler

Ê ABSOLUTELY NO CHANGES TO THE DTB FORMAT.

Ê -@ command line option global enable.

Ê Generates extra nodes in the root (__symbols__, __fixups__,
__local_fixups__) containing resolution data.

Ê /plugin/ marks a device tree fragment/object (controls generation
of __fixups__ and __local_fixups__ nodes).

Ê To perform resolution the base tree needs to be compiled using
the -@ option and causes generation of __symbols__ node only.

13

Compiling foo.dts (base tree)

$ dtc -O dtb -o foo.dtb -b 0 -@ foo.dts && fdtdump foo.dtb

/ {

 bar = <0x00000001>;

 foo {

 linux,phandle = <0x00000001>;

 phandle = <0x00000001>;

 };

 __symbols__ {

 FOO = "/foo";

 };

};
14

Compiling qux.dts (object)

15

$ dtc -O dtb -o qux.dtbo -b 0 -@ qux.dts && fdtdump qux.dtbo

/ {

 qux = <0x00000001>;

 quux = <0xdeadbeef>;

 baz {

 linux,phandle = <0x00000001>;

 phandle = <0x00000001>;

 };

 __symbols__ { BAZ = "/baz"; };

 __fixups__ { FOO = "/:quux:0"; };

 __local_fixups__ { fixup = "/:qux:0"; };

};

How the resolver works

Ê Get the max device tree phandle value from the live tree + 1.

Ê Adjust all the local phandles of the tree to resolve by that amount.

Ê Using the __local__fixups__ node information adjust all local
references by the same amount.

Ê For each property in the __fixups__ node locate the node it
references in the live tree. This is the label used to tag the node.

Ê Retrieve the phandle of the target of the fixup.

Ê For each fixup in the property locate the node:property:offset
location and replace it with the phandle value.

16

Part 3: Changesets/Transactions

Ê A Device Tree changeset is a method which allows us to apply a
set of changes to the live tree.

Ê Either the full set of changes apply or none at all.

Ê Only after a changeset is applied notifiers are fired; that way the
receivers only see coherent live tree states.

Ê A changeset can be reverted at any time.

Ê Part of mainline as of 3.17.

17

Changesets in kernel API

Ê Issue of_changeset_init() to prepare the changeset.

Ê Perform your changes using of_changeset_ 
{attach_node|detach_node|add_property|
remove_property|update_property}()

Ê Lock the tree by taking the of_mutex;

Ê Apply the changeset using of_changeset_apply();

Ê Unlock the tree by releasing of_mutex.

Ê To revert everything of_changeset_revert();

18

Part 4: Device Tree Overlays

Ê A method to dynamically insert a device tree fragment to a live tree and
effect change.

Ê Simplest example: turn the status property of a device node from
“disabled” to “okay” and have the device corresponding to that node be
created.

Ê Low level interface; A generic configfs manager is provided, but for
platforms like the beaglebone a more elaborate manager may be required.

Ê Good enough for hardware hackers – no reboots required (if all the
platform device removal bugs are fixed).

Ê 7th version of the patchset was posted, 8th will be forthcoming ELCE14/
Plumbers discussion.

19

Device Tree Overlay format

20

/plugin/;

/ {

 /* set of per-platform overlay manager properties */

 fragment@0 {

 target = <&target-label>; /* or target-path */

 __overlay__ {

 /* contents of the overlay */

 };

 };

 fragment@1 {

 /* second overlay fragment... */

 };

};

Device Tree Overlay in kernel API

Ê Get your device tree overlay blob in memory – using a call to
request_firmware() call, or linking with the blob is fine.

Ê Use of_fdt_unflatten_tree() to convert to live tree
format.

Ê Call of_resolve_phandles() to perform resolution.

Ê Call of_overlay_create() to create & apply the overlay.

Ê Call of_overlay_destroy() to remove and destroy the
overlay. Note that removing overlapping overlays must be
removed in reverse sequence.

21

Device Overlay ConfigFS manager

Ê Generic Overlay manager.

Ê Very simple file based interface

Ê # mkdir /config/device-tree/overlays/test

Ê # cp OVERLAY.dtbo \ 
 /config/device-tree/overlays/test/dtbo

Ê # rmdir /config/device-tree/overlays/test

Ê Requires a binary configfs attribute patch

Ê Patches reviewed, and will be reposted.

22

Overlay patch status tracker

Ê Changesets part of mainline by 3.17

Ê Overlays part mainline by 3.19

Ê ConfigFS manager and sysfs interface being reworked and will be
reposted

Ê DTC v3 patchset is posted, v4 will come soon addressing some
points (Sascha Hauer’s DTS overlay sugar syntax)

23

New developments and experiments

Ê Device Tree Variants (used to be quirks)

Ê A method to apply an overlay (which can’t be reverted) early
in the boot process right after unflattening.

Ê Boot different board variants using the same device tree blob.

Ê A board specific identification method is used to select which
overlay instantiates the specific board.

Ê Makes deployment and manufacturing considerably less
painful.

Ê Reduces boot time since you remove the full-blown boot-
loader for a simple shim.

24

New developments and experiments

Ê We now have a way to track phandles and their reference
targets.

Ê Solve some long standing issues having to do with the device
probe order.

Ê Device probe order dependency tracking and re-
arrangement. RFC posted, testers wanted.

Ê Can be the basis for having parallel device probe, reducing
boot time further.

25

In the pipeline

Ê Overlays based FPGA manager by Alan Tull

Ê Now at v5, should land in mainline soon.

Ê Beaglebone cape manager (yes it all started here and still not
ready!)

Ê Your ideas?

26

Thank you for listening

