
Passing Time with a
SPI Framebuffer Driver

Matt Porter

Texas Instruments

February 15, 2012

Overview

•  How did this project come about? (or how to mix work and fun)

•  SPI display controllers and the little bitty Adafruit display

•  What’s my obsession with Arduino and BeagleBone about?

•  Linux, SPI, and display drivers

•  Dissection of major organs in the driver

•  Debugging: a tool for the masses, the OBLS

•  Problems Problems Everywhere…

•  Obligatory demo

•  Q&A

2/15/12 2

The “Challenge”

•  Customer:
–  “We don’t understand how to use EDMA in our Linux SPI display driver”

•  Field:
–  “There are no examples! It’s too complex in Linux! There’s no [fine] manual!”

•  Manager:
–  “How can we help the customer?”

•  Me:
–  Reviews customer driver that ignores all existing Linux driver frameworks
–  “Tell you what, it’ll probably be easier to just write their driver for them as an

example if the Linux FB and SPI docs are not sufficient.”

2/15/12 3

Adafruit 1.8” TFT LCD

•  http://www.adafruit.com/products/358

•  128x160 resolution, 16-bit color

•  ST7735 display controller
–  http://www.adafruit.com/datasheets/ST7735R_V0.2.pdf

•  3.3V/5.0V tolerant I/O

•  LCD and and controller on a breakout board with header strip
–  Some assembly required

•  Chip selects provided for both the ST7735 controller and for a uSD slot
on the board
–  uSD isn’t very exciting for our purposes

2/14/12 4

ST7735 display controller

•  SPI or parallel connection

•  Internal display data RAM contents drive display output

•  In 4-wire serial mode, requires MOSI, CS, SCLK, RESET, and D/C
–  D/C (Data/Command mode) is an out-of-band signal driving SPI bus

transfers to either the internal RAM or the internal register file, respectively

•  SPI Mode 3
–  CPOL=1 (clock base high)
–  CPHA=1 (data setup on falling edge, latch on rising edge)

•  Max clock frequency of 15MHz
–  More on this later…

2/14/12 5

ST7735 display controller

•  Pixel formats
–  RGB444
–  RGB565
–  RGB666

•  Basic operation
–  Send commands to init controller for display specific settings
–  Configure internal ram row/column window to write when data asserted
–  Assert data mode and perform SPI transfers to write pixel data

2/15/12 6

Arduino and BeagleBone

•  The differences are quickly obvious
–  Arduino carries a lowly microcontroller and minimal peripheral support
–  Beaglebone carries a Cortex A8 core and loads of peripherals

•  But what makes them similar?
–  Design choices…BeagleBone set out to fill in the higher end need for

hobbyists to interface with an SoC that runs Linux has much more
processing power.

•  Both provide standardized expansion headers for standardized shields or capes to
be stacked.

•  5V or 3.3V tolerant I/O (depends on Arduino model) for simple interfacing
–  Both have strong communities

•  Just about every part or breakout board you can buy at popular outlets like
Sparkfun and Adafruit have Arduino libraries

•  Beagleboard.org has an active community for existing boards and many of those
users are also using BeagleBone

2/14/12 7

Expansion Headers on the BeagleBone

•  Two 48 pin expansion connectors P8 and P9

•  P8 has pins with GPIO, GPMC, LCD, Timers, PWM/QEP, McASP,
UART and MMC capabilities

•  P9 has pins with GPIO, SPI, I2C, GPMC, MII/GMII/RGMII, UART,
Timers, PWM, CAN, McASP, and MMC

•  All expansion header I/O is 3.3V
–  Easy interfacing of current parts and breakout boards

•  P9 has everything we need to interface the Adafruit 1.8” LCD

2/14/12 8

BeagleBone P9 Expansion Header

2/14/12 9

Interfacing BeagleBone and 1.8” LCD

2/15/12 10

SPI1_SCLK

SPI1_D1

SPI1_CS0

GPIO3_19

GPIO3_21

Writing a Driver - The Wrong Way™

•  Ignore the Linux SPI framework

•  Ignore the Linux framebuffer framework

•  Ignore the Linux GPIO framework

•  Ignore the platform pinmux (or generic pinctrl/pinmux) framework

•  Write a misc driver
–  Implement your own pinmux routines, bang on hardware directly
–  Implement your own GPIO routines, bang on hardware directly
–  Implement your own SPI transfer routines, banging on the hardware directly
–  Implement a display driver by transferring a display buffer via write()

Writing the Driver – The Right Way™

•  When in doubt – assume everything you’re about to do has been done
before

•  Linux SPI subsystem
–  http://www.kernel.org/doc/Documentation/spi/spi-summary

•  Linux GPIO subsystem
–  http://kernel.org/doc/Documentation/gpio.txt

•  Linux framebuffer subsystem
–  http://kernel.org/doc/Documentation/fb/framebuffer.txt
–  http://kernel.org/doc/Documentation/fb/deferred-io.txt

•  Pinmuxing might be the only thing that’s underdocumented and
completely arch specific (today)…but there are examples.

Registering the SPI device

static const struct st7735fb_platform_data bone_st7735fb_data = {

 .rst_gpio = GPIO_TO_PIN(3, 19),

 .dc_gpio = GPIO_TO_PIN(3, 21),

};

Convert the ST7735 reset
signal on GPIO 3_19 to a
unique Linux GPIO value.

Convert the ST7735 data/
command signal on GPIO
3_21 to a unique Linux
GPIO value.

Registering the SPI device

static struct spi_board_info bone_spi1_slave_info[] = {

 {

 .modalias = "adafruit_tft18",

 .platform_data = &bone_st7735fb_data,

 .irq = -1,

 .max_speed_hz = 8000000,

 .bus_num = 2,

 .chip_select = 0,

 .mode = SPI_MODE_3,

 },

};

McSPI bus numbering
starts at 1 so spi1 is
bus 2.

McSPI bus numbering
starts at 1 so spi1 is
bus 2.

Mode 3 corresponds
to CPOL/CPHA == 1.

Registering the SPI device

/* setup spi1 */

static void spi1_init(int evm_id, int profile)

{

 setup_pin_mux(spi1_pin_mux);

 spi_register_board_info(am335x_spi1_slave_info,

 ARRAY_SIZE(am335x_spi1_slave_info));

 return;

}

DO NOT forget to set
up your platform’s pin

muxes!!!

Finally! Register our SPI
slave device(s) with the

device model.

Registering the SPI driver

static struct spi_driver st7735fb_driver = {

 .driver = {

 .name = "st7735fb",

 .owner = THIS_MODULE,

 },

 .id_table = st7735fb_ids,

 .probe = st7735fb_probe,

 .remove = __devexit_p(st7735fb_remove),

};

Our framebuffer driver
entry point. Use the
existing FB skeletonfb
or another similar
driver from here.

Framebuffer Deferred I/O

•  Traditional framebuffer driver relies on video memory on the “graphics
card” or in system memory which directly drives the display.
–  This framebuffer is what is exposed to userspace via mmap().

•  For SPI and other indirect bus connections to a display controller, we
can’t directly expose the internal display controller memory to
userspace.
–  USB DisplayLink

•  With deferred I/O and an indirect display connection, userspace can be
presented with a kernel buffer that can be mmaped
–  Userspace writes to mmapped buffer
–  Deferred I/O framework records page faults and maintains a list of modified

pages to pass to the device driver deferred i/o handler on a periodic basis
–  Driver handler then performs bus-specific transfers to move the data from

the modified pages to the display controller

Using FB Deferred I/O

static void st7735fb_deferred_io(struct fb_info *info, struct list_head *pagelist)

{

 st7735fb_update_display(info->par);

}

static struct fb_deferred_io st7735fb_defio = {

 .delay = HZ/20,

 .deferred_io = st7735fb_deferred_io,

};

…

info->fbdefio = &st7735fb_defio;

fb_deferred_io_init(info);

…

Using FB Deferred I/O

static void st7735fb_update_display(struct st7735fb_par *par)

{

 int ret = 0;

 u8 *vmem = par->info->screen_base;

 /* Set row/column data window */

 st7735_set_addr_win(par, 0, 0, WIDTH-1, HEIGHT-1);

 /* Internal RAM write command */

 st7735_write_cmd(par, ST7735_RAMWR);

 ret = st7735_write_data_buf(par, vmem, WIDTH*HEIGHT*2);

 if (ret < 0)

 pr_err("%s: spi_write failed to update display buffer\n”, par->info->fix.id);

}

FB is ~40KiB, ignore the
pagelist and write the entire

thing every time

Bench Tools for Debugging

•  JTAG
–  External (BDI2000/3000, Flyswatter, etc)
–  Onboard (BeagleBone has FTDI2232H)
–  OpenOCD (http://openocd.sourceforge.net/)

•  Logic Analyzer
–  Salae ($149)

•  http://www.saleae.com
–  Open Bench Logic Sniffer ($50)

•  http://dangerousprototypes.com/docs/Open_Bench_Logic_Sniffer
•  http://ols.lxtreme.nl/
•  http://sigrok.org/wiki/Main_Page

OBLS breakdown

•  Logic Analyzer

•  16 buffered channels (-0.5V to 7V tolerant)
–  Additional 16 channels can be enabled by adding a buffered “wing”

•  Up to 200MHz bandwidth depending on channel configuration

•  USB powered

•  USB connectivity (CDC ACM)

•  Completely open hardware

•  Many client choices

OLS Software Tools

•  Modified SUMP
–  Java

•  OLS (alternative java client)
–  Java
–  Several protocol decoders

•  Sigrok
–  Cross platform C
–  Extendable with Python-based protocol decoders

•  Some early ones in place

OLS In Action

Working through some problems

•  Tried the display on an Arduino Uno first, gotta love how everything
comes with an Arduino sketch library these days
–  Same sequence on BeagleBone, epic fail

•  AM335x TRM shows SPI1_D0 being the MOSI output, it is not. MOSI is
found on SPI1_D1

•  Originally tried to drive at max 15MHz SPI clock rate, this was another
fail.
–  The Adafruit breakout board adds a CD4050B level shifter to be 5V tolerant

for Arduino. This chip is slow and limits the clock rate to <10MHz, driving my
change to 8MHz for the spi device registration.

–  Some hardware hacks can get around this:
•  http://fabienroyer.wordpress.com/2011/05/29/driving-an-adafruit-st7735-tft-display-

with-a-netduino/

Working through some problems

•  The 16-bit pixel format presented an issue with userspace compatibility
–  All userspace application assume that framebuffers are organized in a

native endian format.
–  On our little endian ARM system, the mmaped shadow framebuffer is

written in native little endian.
–  SPI buffer transfers in 8-bit data mode required by the ST7735 do a byte

swap by nature of the byte-wise addressing of the PIO or DMA based
memory access

•  Have to present the SPI adapter driver with a byte swapped shadow buffer
•  Driver has hack which byte swaps the buffer before doing a spi_write() on every

deferred_io update. This allows unmodified use existing FB API applications

Display and Logic Analyzer Demo

•  fbv displaying a JPEG

•  Capture and SPI protocol decode of display transferring framebuffer
data during display update

Q&A

•  ST7735FB driver
–  https://github.com/ohporter/linux-am33x/tree/st7735fb

•  ST7586FB driver
–  https://github.com/ohporter/linux/tree/st7586fb

•  Enlightenment running on the ST7735FB driver
–  http://www.youtube.com/watch?v=Mlb-1ZeVik0

