The Yocto Project - Where We’re Going and What’s Next

Philip Balister
philip@opensdr.com

Open SDR

June 30, 2023
1 Introduction

2 Five Year Plan

3 Five Year Plan Details
 - Patchtest
 - Toaster
 - Core Workflow
 - Project Tooling
 - Meta-OpenEmbedded
 - Security
 - VSCode IDE Integration
 - Binary Distribution
 - Layer Setup

4 Call to Action
whoami

- Linux user since kernel 0.95a
- OpenEmbedded since 2006
- GNU Radio since 2008
- Yocto Project since 2010
- Industry experience
 - Brushless DC motors
 - Electronic PCB contract assembly
 - Steel mill automation
 - Graduate School
 - Embedded Linux for Software Defined Radio
Why was the Yocto Project Created

- By 2010, Embedded Linux was taking off
- OpenEmbedded use is skyrocketing
 - Developers are getting jobs
 - Users and developers have conflicting needs
- This leads to the creation of the Yocto Project
- The Yocto Project is the first Linux Foundation Collaborative Project
- Founding members include 8 companies and OpenEmbedded
What is the Yocto Project

- Linux Foundation’s first collaborative project
- Three membership levels: Silver, Gold and Platinum
- Thirty members and OpenEmbedded
- Member dues support the project’s operations
 - Documentation
 - Patch integration and testing for OpenEmbedded-Core
 - Infrastructure: autobuilder, git, etc
 - Bug tracking
 - Testing the Poky reference distribution on reference hardware
 - Advocacy and public outreach
 - Managing contractors
 - Developing new funding streams
Impact of the Yocto Project

- 18 of 24 stands at Embedded Open Source Summit (6/23) have some Yocto Project dependency
Five Year Plan Development

- Trying to answer the question, What should the project look like in five years?
- Identifying where the project lacks maintainers
- Ensure project sustainability
- Improve best practices
- Improve the project resilience to loss of maintainers and funding
- Attract new members to the Yocto Project
Five Year Plan Execution

- After creating the plan, we developed estimates for
 - Number of developers and time
 - Of course this leads to dollars

- Developers are in short supply, people working full time for companies

- Yocto Project uses member dues to fund some work already
 - Pays Richard Purdie, Yocto Project Architect
 - Paying developers test patches and report issues found on autobuilder
 - Paying a person to work on documentation

- Conclusion: Expand project membership to fund work
The Yocto Project workflow is based on patches sent via email
Patchwork is used to manage patches sent to mailing lists
Patchtest implemented on top of patchwork
 Ran publicly for a while
 Users found automatic feedback very helpful
But, Patchwork had to be updated, this broke Patchtest
No one had time to update Patchtest
Patchtest - Plans

- Update patchtest to work with new patchwork
- Run basic tests locally and give developers feedback before contributing
- This reduces maintainers workload by catching common issues
- Tests run may be updated based on developer feedback
- End goal, make it easier for people to submit patches
Toaster - Background

- Toaster is a web-based interface to bitbake
- Based on data collected by user interface designers
- Graphical interface benefits new users
- bitbake core-image-sato seems simple, but what is inside
- Also useful to experienced users to look into the build process
- Ensure toaster works today
- Update automated tests to make sure it keeps working
- Increase user base
- Work with users to work out areas to improve capability
Core Workflow - Background

- Building everything from source does take time
- Many people are building the same configurations
- The Yocto Project does support sharing build output
Core Workflow - Plans

- Public shared state from the autobuilder exists
- For widespread use, a proper Content Delivery Network is required
- Some additional features and tooling needs developing
Project Tooling - Background

- Over the years several tools to automate common developer tasks
 - recipetool
 - devtool
- Other tools are fundamental, like pseudo
- Common theme, maintainers moved to other projects
Project Tooling - Plans

- Work on existing bug backlog
- Add support for modern languages with their own packaging systems (Rust, Go, etc)
- Add new features
In the beginning, OpenEmbedded Classic was one layer with all the recipes

Maintainence challenges drove the creation of the Yocto Project

OpenEmbedded-core reduced recipes to build basic systems that are testable

Many of the remaining recipes ended up in meta-openembedded

Much less testing and less focused maintainers

But still widely used in real world systems!
Meta-Openembedded - Plans

- Add automated CVE checking, already in openembedded-core
- Enable Automatic Upgrade Helper
- Identify recipes that need ptests
- Mirror sources for LTS releases
- Identify obsolete recipes and remove them (and how to re-add)
- Improve reproducible builds
Security is more than just running automated tools

- Yocto Project needs processes in place to handle security issues
- Tools to support security analysis of build artifacts, like SBOM
- No dedicated project personnel focused on security
Security - Plans

- Identify and document security process for the Yocto Project
- Implement additional security infrastructure and processes
- Create and staff a security team
- Support development of SPDX 3.0 draft standard
VSCode IDE Integration - Background

- All the cool people use IDE’s
- Potential to lower the perceived complexity using bitbake
- Integrate with build environment
- Support both application and recipe developers
VSCode IDE Integration - Plans

- Complete support for writing recipes
- Automated testing of vscode plugins
- Extend support to work with SDKs for application developers
- Support testing and debugging on qemu and target hardware
- Review what the user base requires
Binary Distribution - Background

- Yocto Project creates tools to build source based distributions
- In many cases we need can build multiple images from the same build
- Shared state has the binaries, but isn’t as convenient as standard package formats
- Once open a time there was a web based tool that created images for hardware
Binary Distribution

Binary Distribution - Plans

- Creating deployable images quickly helps people prototype
- This is harder than it looks
- What features should the binary distribution include?
- What machines should be supported?
- Should it produce containers?
Layer Setup - Background

- OpenEmbedded Classic solved this by having all recipes in one layer
- Minimal useful system has openembedded-core and a BSP
- Typical systems add 2-5 more layers
- Many existing solutions, repo, combo layer, git submodules, bitbake feature
- If you speak to 3 developers you will get 6 solutions
Layer Setup - Plans

- This is the hardest problem presented today
- Many use cases, CI configurations, developer setups, end users...
- Track layer revisions and build configuration
- Challenging people problem!
Call to Action - Companies

- Join the Yocto Project
- Dedicate resources to support the project
- Review the RFQ for five year plan tasks and bid on them
Call to Action - Individuals

- Talk to your employer about joining the Yocto Project
- Spend some spare time contributing to the project
- Review the RFQ for five year plan tasks and bid on them
BOF (Birds of a Feather flock together) South Hall 3B at 1450

Birds of a feather flock together is an English proverb. The meaning is that beings (typically humans) of similar type, interest, personality, character, or other distinctive attribute tend to mutually associate.