
Handhelds Mojo:
Building and running Ubuntu distributions on ARM

Andrew Christian Brian Avery George France

Handhelds Mojo:
Building and running Ubuntu distributions on ARM

Andrew Christian Brian Avery George France

The Historical Approach

Development computer
  Ubuntu/RedHat/Debian…
  >12,000 packages
  Native build environment

Mobile device
  Maemo/OpenEmbedded…
  ~700-2500 packages
  Cross-build environment

The mismatch between development and
mobile device is a nuisance…

What we’d like…

Precompiled software for mobile & embedded devices with:
  Large numbers of up-to-date packages
  Well-defined releases with security and bug fixes
  Easy interoperability with the developer’s desktop
  Code compiled and optimized for our specific device

What’s the quickest way to get this?
  Compile the desktop distribution for the mobile devices!

Common concerns

Aren’t mobile devices too small to run desktop software?
  256 MB of RAM and an SD flash card is larger than the

laptops we used just 9 or 10 years ago

The graphical user interface for the desktop doesn’t make
sense on a mobile device!

  GUI applications represent only a small number of the
applications in a distribution.

  Many desktop distributions contain small-device
applications (e.g., Mobile Ubuntu)

Quick Summary

  The Mojo project has been rebuilding Ubuntu
distributions for different flavors of ARM processors

Mojo Ubuntu Released v5 v5+VFP v6+VFP

Frisky 7.04 March 2008 ✔ ✔

Grumpy 7.10 June 2008 ✔ ✔

Hasty 8.04 July 2008 ✔ ✔ ✔

Icy 8.10 Nov. 2008 ✔ O O

http://mojo.handhelds.org

ARM Targets

Outline

  The challenges in building the distributions
  Compilers, libraries, and toolchains
  Native machine clusters

  The current state of the distributions
  What works, what has been patched, what is missing

  How to use a Mojo distribution
  Sample installation
  Examples of systems that use the distribution
  Performance

  Future work

Desktop distribution build process

Key points
  The build system is running its own packages. Iteration

required!
  The build system runs on native hardware
  The toolchain is intrinsic to the distribution and gets compiled

along with all of the other packages

Original
source code

Patch files:
code and
metadata

Source
Packages

Binary
Packages

Native
Build

System

Challenge: Toolchains

A toolchain is the combination of:
  C compiler (gcc)
  Linking and object tools (binutils)
  Standard C libraries (glibc)

You can’t build a distribution without a good, stable
toolchain. But you can’t build the toolchain without a
matching distribution….so you iterate.

Ubuntu’s toolchains

  The quality of ARM code produced and the number of
architectures supported have generally improved over
time.

gcc binutils glibc

Dapper 4.0.3-1 2.16.1.cvs2006… 2.3.6-0ubuntu20

Edgy 4.1.1-6ubuntu3 2.17-1ubuntu1 2.4-1ubuntu12

Feisty 4.1.2-1ubuntu1 2.17.20070103… 2.5-0ubuntu4

Gutsy 4.1.2-9ubuntu2 2.18-0ubuntu3 2.6.1-1ubuntu9

Hardy 4.2.3-1ubuntu3 2.18.1~cvs2008… 2.7-10ubuntu3

Intrepid 4.3.1-1ubuntu2 2.18.93.2008… 2.8~20080505-…

Verifying you have a good toolchain

A “good” toolchain is one that passes most of its test suites.
  ARM is not the most popular architecture: building a

“good” ARM toolchain requires a fair bit of testing and
patching

  Toolchains depend in surprising ways on all sorts of other
packages (e.g. Perl, bash, …)

  Number of errors from test suite decreases as you
iterate; for example, for gcc 4.1.2, we went from 11 to 5
to 0 with each iteration.

To maximize distribution quality, we iteratively
compile each distribution at least 3 times

What, exactly, do you compile for?

Compiler option Choices What it affects

Application Binary
Interface

Old ABI, EABI (1-5) Data structure alignment, how
parameters are passed to/from
functions, kernel interface

Floating point Hardware, Software,
Vector (VFP)

Format of floating point numbers
and execution speed

Endian Little/Big How words are stored in memory

ARM Architecture v3, v4, v5, v6, v7… The instruction set

Thumb Non-thumb/Thumb (&
version)

Code size, execution speed, &
interoperability

Target processor E.g. Xscale Optimization for a specific
processor or family

ARMv5EL= EABI, soft FP, little endian, v5, non-thumb

Challenge: Handling the “native” problem

Desktop distributions are not cross-built: you need an
ARM-based machine to build an ARM-based distribution

  Option #1: Fundamentally change the build system using
something like Scratchbox.
  We couldn’t find a good way to do this without a lot of source

package modifications

  Option #2: Create a build cluster of ARM-based
machines...

Options for “native” build machines

ARM Kernel

x86 Hardware

ARM Hardware

ARM Distribution

x86 Kernel

x86 Distribution

QEMU-SYSTEM-ARM

ARM Kernel

ARM Distribution

Pure ARM QEMU-SYSTEM-ARM

Virtual ARM Hardware

In 2007 we looked at the time and cost to
build a sufficiently fast cluster

2007 cluster: Native ARM build machines

20 home-built 1U ARM boxes
  600 MHz ARMv5

processors
  32 hours to compile and

run the test suite for
gcc-4.1 (one box)

  4 days to compile the
main Ubuntu packages
(about 3000)

2008 cluster: Virtual ARM build machines

17 Dell x86 workstations
(34 virtual ARMv6/7 machines)

  Emulated ARMv6 processor (2
on each workstation)

  25 hours to compile and run
test suites for gcc-4.1

  2 days to compile main Ubuntu
packages (about 3000)

About a 25% performance increase and a
60% cost decrease

Outline

  The challenges in building the distributions
  Compilers, libraries, and toolchains
  Native machine clusters

  The current state of the distributions
  What works, what has been patched, what is missing

  How to use a Mojo distribution
  Sample installation
  Examples of systems that use the distribution
  Performance

  Future work

Mojo Releases

  Frisky was our test case
  Grumpy only exists as a bridge to Hasty
  Hasty is in very good shape and has updates
  Icy is very new

Mojo Ubuntu Released v5 v5+VFP v6+VFP

Frisky 7.04 March 2008 ✔ ✔

Grumpy 7.10 June 2008 ✔ ✔

Hasty 8.04 July 2008 ✔ ✔ ✔

Icy 8.10 Nov. 2008 ✔ O O

ARM Targets

Statistics from a sample build

Hasty ARMv5 EL Main Contributed

Ubuntu source packages 3114 11188

Ubuntu binary packages 6151 18955

Source packages we modified 55 6

Completely built source packages 2921 (94%) 9591 (86%)

The majority of packages just
build without modification

Why didn’t some packages build?

Hasty ARMv5EL Main Contributed

Wrong architecture (not ARM) 58 (29%) 247 (15%)

Partially built – some of generated
debs are not for ARM (e.g., Linux
kernel)

36 (18%) 33 (2%)

Waiting on other packages that failed 81 (41%) 993 (61%)

Failed (e.g., Java) 22 (11%) 364 (22%)

Many packages fail to build completely
because they aren’t for ARM

Challenges in package building

  Many Ubuntu packages come in build-dependency loops
that must be manually unwound (e.g. KDE, Java)

  Some important packages simply don’t exist for ARM
(e.g., Java)

  Some important packages have to be backported from
later distributions (e.g. Mono, Fortran compilers)

  Some key packages have to be patched because we’re not
officially part of Ubuntu (e.g., dpkg, apt, keyrings)

  Some packages just have errors (e.g., Qt float data type,
minor fixes in Python)

A sample dependency loop (Java)

Outline

  The challenges in building the distributions
  Compilers, libraries, and toolchains
  Native machine clusters

  The current state of the distributions
  What works, what has been patched, what is missing

  How to use a Mojo distribution
  Sample installation
  Examples of systems that use the distribution
  Performance

  Future work

Debian Installer with QEMU

  Download installer components

$ qemu-img create –f raw test.img 2G
$ qemu-system-arm –M versatilepb –m 256M –kernel vmlinux-926 \
 –initrd ramdisk.gz –hda test.img –append “root=/dev/ram”

$ wget http://repository.handhelds.org/hasty-armv5el/installer-arm/images/versatilepb/ramdisk.gz
$ wget http://repository.handhelds.org/hasty-armv5el/installer-arm/images/versatilepb/vmlinuz-926

  Create a QEMU disk image

  Run the Debian Installer…

Debian Installer

Debian Installer

Debian Installer

Debian Installer

Debian Installer

Debian Installer

Debian Installer

Debian Installer

Debian Installer

Moving beyond the installer

  Once the installer has finished, you can boot the image in
QEMU with:

  If you’d like a graphical environment, try:

$ qemu-system-arm –M versatilepb –m 256M –kernel vmlinuz-926 –hda test.img \
 –append “root=/dev/sda1”

$ apt-get install xorg xfce4 gdm
Edit /etc/X11/xor.g.conf to include Driver “fbdev”

Instructions are on the
website and the Mojo wiki

Running system

After running “startx”

Examples of what you can do

  Robert Nelson has Beagle Board instructions
  Cortez has been working on the Sharp Zaurus
  Rabeeh Khoury (Marvell) has good stuff for the Marvell

78100 board (wicked fast ARM…)

Testing Hasty ARMv5EL & v6EL-VFP

Beagleboard

XFCE4 + gdm

Gimp on a BeagleBoard (Hasty v5)

Firefox on BeagleBoard (Hasty v5)

Does architecture matter?

  A quick performance test using Cairo to draw falling,
spinning PNG and SVG files

  Tested on a TI BeagleBoard, we saw a 15-20% speedup
from the Hasty ARMv5EL distribution to the Hasty
ARMv6EL+VFP

Future work

 Building the Icy (8.10) release
  Submitting patches back to Debian and Ubuntu
 Considering adding a new architecture or two
 Considering building Debian
…and using these distributions, of course…

http://mojo.handhelds.org

