Using Serial kdb / kgdb to
Debug the Linux Kernel

@
24

Doug Anderson, Google

Intro

Google Chrome OS

About Me

Random kernel Engineer at Google working on Chrome OS.

| like debugging.

| like debuggers.

Not the author nor maintainer of kdb / kgdb, but | fix bugs sometimes.
| really only have deep experience with Linux on arm32 / arm64.

Google Chrome OS

About You W%

e You're a kernel Engineer.
e You sometimes run into crashes / hangs / bugs on devices you're working on.

e You have a serial connection to the device you're working on.
o There are other ways to talk to kdb / kgdb, but | won't cover those.

e You're here in person (or watching a video), since much of this will be demo.

Google Chrome OS

Syllabus

What is kdb / kgdb?

What kdb / kgdb are best suited for
Comparison to similar tools

Getting setup

Debugging your first problem
Debugging your second problem
Next steps

Google Chrome OS

What is kdb / kgdb?

e The docs are the authority.
https://www.kernel.org/doc/html/v5.2/dev-tools/kgdb.html

e kdb = The Kernel DeBugger. A simple shell that can do simple peeks/pokes
but also has commands that can print kernel state at time of crash.

e kgdb = The Kernel GDB server. Allows a second computer to run GDB and
debug the kernel.

Google Chrome OS

https://www.kernel.org/doc/html/v5.2/dev-tools/kgdb.html

Do I want kdb, or kgdb?

e Before my time, | believe you had to pick. Now, you can have both.
e kgdb just lets you use vanilla gdb to debug the kernel. Awesome, but knows

nothing about Linux(*).
e kdb knows about Linux but is not a source level (or even assembly level)

debugger.
e You can enable kgdb without kdb, but why would you? kdb makes a nice

first-level triage and can help with Linux-specifics.

(*) Well, there is "scripts/gdb/linux" to help...

Google Chrome OS

What can I do at crash time with kdb?

List all processes

Dump dmesg

Dump ftrace buffer

Backtrace any process

Send magic sysrq

Peek/poke memory (I've never used this)

Mostly | just run "dumpall” and save it to a text file, then move over to kgdb.

Google Chrome OS

What 1s kgdb good at?

e You need to have stashed away matching symbol files (vmlinux + modules)
e It's as good at debugging code as gdb is

o When dealing with optimized code, that sometimes means "not very"
e |Itis slow, but usable

e You can debug any process in the system, though can't always backtrace
past assembly code (which might include interrupts)

e |tis far better suited for after-the-crash debugging than single step debugging
o All CPUs stop and all interrupts are disabled while in the debugger. Not everything handles
that so well.
o Anything that involves periodic comms with the debugger (watchpoints?) is slooooow
o Stepping / setting / clearing breakpoints just seems buggy

Google Chrome OS

kdb/kqdb vs. JTAG

Much overlap, especially when you point gdb at your JTAG

JTAG needs dedicated pins and might be tricky to setup

JTAG software often needs to be updated for each new core type
JTAG software / hardware is often expensive

There is no "kdb" over JTAG

JTAG communication is usually faster, sometimes has extra buffers

tl;dr: kdb / kgdb can cover ~75% of what people use JTAG for and is free / doesn't
require a special setup.

Google Chrome OS

kdb/kgdb vs. reading the kcrash

e \Why bother with kgdb when everything you could need is printed to the
console (or pstore) on panic?

e Panic prints a lot, but not everything. Maybe you need to see the value of a
global variable, or dereference a few pointers.

e Having gdb able to help you make sense of a crash is invaluable.

Google Chrome OS

kdb/kgdb vs. kdump

e In theory you can set things up to dump tons of stuff about the kernel at crash
time by kexec-ing a dump kernel.
e |'ve never done this, so maybe someone will do a presentation next year on it.

Google Chrome OS

Setting Up

Chrome OS

Getting setup - need a serial port

e | said this in the beginning. Weren't you listening?
o | probably distracted you with the long romantic walks through the woods at night

e Serial driver needs polling support since we run with interrupts off.
o Not too hard to add. poll _get char() / poll_put_char()

Google Chrome OS

Getting setup - kdmx

e Technically not needed.

e Usually run with kernel console + agetty on serial port and want kgdb to share
too. Constantly closing / opening the serial port is a pain.

e kdmx creates two pseudo terminals: one for console+agetty, other for gdb.

e kdmx is more reliable than agent-proxy (a similar tool hosted on the same git
server) and doesn't get your IT folks riled up.

e Known issue: every once in a while kdmx gets confused and keeps echoing
"-"If that happens, just restart it.

Hosted at https://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

Google Chrome OS

kdmx 1s not too hard to set up

S mkdir -p /tmp/kdmx_is_not_hard

S cd /tmp/kdmx_is_not_hard

$ git clone git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git .
$ cd kdmx

$ make

S$./kdmx -n -p "/dev/ttyUSBO" -s /tmp/kdmx_ports &

$ cu --nostop -1 $(cat /tmp/kdmx_ports_trm)

When debugging

$ ${CROSS_ARCH}-gdb /path/to/vmlinux \
-ex "target remote $(cat /tmp/kdmx_ports_gdb)"

(could use something besides "cu" if you want)

Google Chrome OS

Getting setup - gdb

e You'll need a cross-compiled version of GDB.

e AKA: if your host is x86_64 and your target is aarch64 then you need gdb that
can run in x86_64 but can debug an aarch64 target.

e Presumably comes from the same place your compiler comes from.

Google Chrome OS

gdb 1s ret too hard to set up

e Setting up gdb is way beyond the scope of this talk.
e If you don't have gdb that works, seek professional help.
e If you actually know how to set up gdb yourself, seek professional help.

Google Chrome OS

Getting setup - kernel config

S cat <<EOF >> .config S cat <<EOF >> .config
CONFIG_VT=y CONFIG_DEBUG_KERNEL=y
CONFIG_VT_CONSOLE=y CONFIG_DEBUG_INFO=y
CONFIG_KGDB=y CONFIG_DEBUG_INFO_DWARF4=y
CONFIG_KGDB_KDB=y CONFIG_FRAME_POINTER=y
CONFIG_PANIC_TIMEOUT=0 CONFIG_GDB_SCRIPTS=y
CONFIG_RANDOMIZE_BASE=n EOF

CONFIG_WATCHDOG=n
CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE=1
EOF

Google Chrome OS

Getting setup - command line params

e Imagine your serial port is ttyS2, then you need on your kernel command line:
o kgdboc=ttyS2

e For good measure:
o console=ttyS2,115200n8 oops=panic panic=0 kgdboc=ttyS2

The "oc" in kgdboc is supposed to be "over console". You can actually get kgdb to
run over a port even if it's not the console port, though.

Google Chrome OS

Demo

Google Chrome OS

Dropping into the debugger

e Magic sysrq is the nicest way, but not always simple:
o External keyboard: Alt-PrintScr-G
o Command line shell: 'echo g > /proc/sysrqg-trigger’
o Send "BREAK-G" over serial port, but:
m Break is hard to send over pseudo-terminals. kdmx allows ~B, but might be eaten up by
the next level (on a Chromebook, servod eats but provides its own escape sequence)
m Relies on userspace having an agetty running because otherwise nobody is listening

e Hardcode a breakpoint into your code: kgdb_breakpoint()

e Cause an oops / panic

e Make your own debug trigger by adding kgdb _breakpoint() into an IRQ
handler

Google Chrome OS

Debugging your first problem

localhost ~ # echo WRITE_KERN > /sys/kernel/debug/provoke-crash/DIRECT

[35.634506] lkdtm: Performing direct entry WRITE_KERN

[35.640172] lkdtm: attempting bad 18446744073709551584 byte write at ffffff80105657b8
[35.648943] Unable to handle kernel write to read-only memory at virtual address ...

Entering kdb (current=0xffffffc0de55f040, pid 1470) on processor 4 Oops: (null)
due to oops @ Oxffffff80108bfad8

CPU: 4 PID: 1470 Comm: bash Not tainted 5.3.0-rc2+ #13

Hardware name: Google Kevin (DT)

pstate: 00000005 (nzcv daif -PAN -UAO)

pc : __memcpy+0x48/0x180

1r : lkdtm_WRITE_KERN+Ox4c/0x90

[4]kdb>

Google Chrome OS

Demo: 'bt'

[4]1kdb> bt

Stack traceback for pid 1470

oxffffffcode55f040 1470 721 1 4 R oxffffffcdode55fa30 xbash
Call trace:

dump_backtrace+0x0/0x138
show_stack+0x20/0x2c
kdb_show_stack+0x60/0x84

do_mem_abort+0x4c/0xb4
el1_da+0x20/0x94
__memcpy+0x48/0x180
lkdtm_do_action+0x24/0x44
direct_entry+0x130/0x178

[4]kdb>

Google Chrome OS

Demo: 'dumpall’

[4]kdb> dumpall
[dumpall]kdb> pid R

KDB current process is bash(pid=1470)
[dumpall]kdb> -dumpcommon

[dumpcommon]kdb> set BTAPROMPT @

[dumpcommon]kdb> set LINES 10000

[dumpcommon]kdb> -summary

sysname Linux

release 5.3.0-rc2+

version #13 SMP PREEMPT Mon Jul 29 14:52:19 PDT 2019
machine aarch64

nodename localhost

domainname (none)

date 2019-07-29 21:54:10 tz_minuteswest ©
uptime 00:05

load avg 1.08 06.33 0.11

MemTotal: 3963548 kB
MemFree: 3552620 kB
Buffers: 10788 kB
[dumpcommon]kdb> -cpu

Currently on cpu 4
Available cpus: 6(I), 1, 2-3(I), 4, 5(I)
[dumpcommon]kdb> -ps

4 idle processes (state I) and
49 sleeping system daemon (state M) processes suppressed,

Chrome OS

Demo: 'dumpall’ (for real)

So much stuff it can't possibly fit on a slide.

Some random status that | rarely look at.

Outputs the end of dmesg (you can get more if you want).
Lists all processes in a clean-ish format.

Dumps stacks for all processes, which can be quite useful.

Google Chrome OS

Demo: sr (run sysrq)

[4]kdb> sr m

sysrq: Show Memory

Mem-Info:

active_anon:3312 inactive_anon:103 isolated_anon:0
active_file:6808 inactive_file:36140 isolated_file:0
unevictable:15000 dirty:2522 writeback:5587 unstable:0

58097 total pagecache pages

0 pages in swap cache

Swap cache stats: add 0, delete 0, find 0/0
Free swap = OkB

Total swap = 0kB

1015040 pages RAM

0 pages HighMem/MovableOnly

24153 pages reserved

4096 pages cma reserved

Google Chrome OS

Demo: kgdb

e Can (but usually don't need to) enter kgdb from kdb using "kgdb" command.
e You'll point gdb at the pseudo-tty opened by kdmx.
e Remember you need to have kept your symbols around.

Google Chrome OS

Demo: kgdb attaching

$ aarch64-cros-linux-gnu-gdb \
/build/${BOARD}/usr/lib/debug/boot/vmlinux \
-ex "target remote S$(cat /tmp/kdmx_ports_gdb)"

Reading symbols from /build/kevin/usr/lib/debug/boot/vmlinux...done.
Remote debugging using /dev/pts/89

memcpy () at .../arch/arm64/lib/copy_template.S:94

94 stp1 A_l, A_h, dst, #16

(gdb)

Google Chrome OS

Demo: kgdb 'bt’

(gdb) bt
#0 memcpy () at .../arch/armé64/lib/copy_template.S:94
#1 Oxffffff801056584c in lkdtm_WRITE_KERN ()

at .../drivers/misc/lkdtm/perms.c:116
#2 Oxffffff8010564d14 in lkdtm_do_action (crashtype=0xffffff8010a8aab0 <crashtypes+608>)
at .../drivers/misc/lkdtm/core.c:221

#3 Oxffffff8010564c90 in direct_entry (f=<optimized out>, user_buf=<optimized out>,
count=11, off=0xffffff8011d9bdfo)

at .../drivers/misc/lkdtm/core.c:382

#15 oxffffff80100830f8 in elB_sync () at .../arch/armé64/kernel/entry.S:779
Backtrace stopped: Cannot access memory at address Oxffffff8011de40d8

(Backtrace stopped message is normal)

Google Chrome OS

Demo: kgdb 'disass /s’

(gdb) disass /s
Dump of assembler code for function memcpy:
.../arch/arm64/1ib/copy_template.S:

42 mov dst, dstin
oxffffff80108bfbh40 <+0>: mov x6, x0
94 stp1 A_1l, A_h, dst, #16
=> Oxffffff80108bfbb4 <+116>: stp x7, x8, [x6], #16

(gdb) print /x S$x6
$1 = oxffffff8010565890

(gdb) info symbol $x6
do_overwritten in section .text

Google Chrome OS

Demo: need to know assembly???

e Can get by without knowing assembly, but helps to not be too afraid of it since
you end up there sometimes.

e Good to know basics, like "stp x7, x8, [x6], #16" writes registers x7/x8 to
(roughly) the memory location pointed to by x6. Can always search the web!

e Sometimes assembly can help you figure out the value of a variable when
gdb claims "<optimized out>".

Google Chrome OS

Demo: kgdb 'info reg’

(gdb) info reg

x0
x1
x2
x3
x4
x5
X6
sp
pc
cpsr
fpsr
fpcr

Google Chrome OS

oxffffff8610565890
Oxffffff80105658c0O
oxffffffffffffffeo
0x20 32
0xo0 0
0x0 0
oxffffff80610565890

Oxffffff8011d9bc40
oxffffff86108bfbb4
0x60000005
0x0 0
0xo0 0

-549481719664
-549481719616
-32

-549481719664

Oxffffff8011d9bc40

oxffffff80108bfbb4 <memcpy+116>
[SPEL=2 C Z]

Demo: kgdb back to C (1)

(gdb) frame 1
#1 Oxffffff801056584c in lkdtm_WRITE_KERN () at .../drivers/misc/lkdtm/perms.c:116

116 memcpy(ptr, (unsigned char *)do_nothing, size);

(gdb) 1list

111

112 size = (unsigned long)do_overwritten - (unsigned long)do_nothing;
113 ptr = (unsigned char *)do_overwritten;

114

115 pr_info("attempting bad %zu byte write at %px\n", size, ptr);

116 memcpy(ptr, (unsigned char *)do_nothing, size);

117 flush_icache_range((unsigned long)ptr, (unsigned long) (ptr + size));
118

119 do_overwritten();

120 }

Google Chrome OS

Demo: kgdb back to C (2)

(gdb) print ptr
$2 = (unsigned char *) Oxffffff8010565890 <do_overwritten> "\375{\277\251\375\003"

(gdb) print size
$3 = 18446744073709551584

(gdb) print do_overwritten - do_nothing
$4 = -32

(gdb) print (unsigned long)(do_overwritten - do_nothing)
$13 = 18446744073709551584

(I wonder if that huge number was intentional)

Google Chrome OS

Demo: kgdb = pretty handy (1)

(gdb) frame 2
#2 Oxffffff8010564d14 in lkdtm_do_action (crashtype=0xffffff8010a8aab0 <crashtypes+608>)

at .../drivers/misc/lkdtm/core.c:221
221 crashtype->func();

(gdb) print crashtype
$5 = (const struct crashtype *) Oxffffff8010a8aaB0 <crashtypes+608>

(gdb) print *crashtype
$6 = {name = Oxffffff8010bfe2d9 "WRITE_KERN", func = Oxffffff8010565800 <lkdtm_WRITE_KERN>}

Google Chrome OS

Demo: kgdb = pretty handy (2)

(gdb) frame 5

#5 Oxffffff801026d288 in __vfs_write (file=0xffffffcOeacf3340, p=0x13ac588
"WRITE_KERN\nrcolors\n", count=11, pos=0xffffff8011d9bdfe) at .../fs/read_write.c:494

494 return file->f_op->write(file, p, count, pos);

(gdb) print *file
$7 = {f_u = {fu_llist = {next = 0x0}, fu_rcuhead = {next = 0x0, func = 0x0}}, f_path = {
mnt = Oxffffffcof104fced, dentry = Oxffffffcoef13b1a0},
f_inode = Oxffffffc0ef13c008, f_op = Oxffffffcedd407c80, f_lock = {{rlock = {
raw_lock = {{val = {counter = 0}, {locked = 0 '\000', pending = 0 '\000'}, {
locked_pending = 0, tail = 0}}}, magic = 3735899821,
owner_cpu = 4294967295, owner = Oxffffffffffffffff}}},
f_write_hint = WRITE_LIFE_NOT_SET, f_count = {counter = 1}, f_flags = 131073,

Google Chrome OS

Demo: kgdb = pretty handy (3)

(gdb) set print pretty on
(gdb) set pagination off

(gdb) print *file

$8 = {
f_u = {
fu_llist = {
next = 0x0
H

fu_rcuhead = {
next = 0x0,
func = 0x0
}
H

Google Chrome OS

Demo: kdb commands through kgdb

(gdb) monitor lsmod

Module Size modstruct Used by

btusb 40960 oOxffffffg8ee8bdb140 @ (Live) oxffffffg8ees8hd3000 []

btrtl 16384 Oxffffff8008b3f040 1 (Live) oxffffffgees8bh3deee [btrtl]
btbcm 16384 Oxffffff8008bc4040 1 (Live) oxffffffg8ee8bc2000 [btbcm]
btintel 20480 oOxffffff8o008bof140 1 (Live) oxffffff8e08b0co00 [btintel]

(gdb) monitor dumpall
[dumpall]kdb> pid R

KDB current process is swapper/0(pid=0)
[dumpall]lkdb> -dumpcommon

Google Chrome OS

Demo: Ix- scripts (1)

e There are python scripts that work with gdb to parse / interpret kernel global
data structures.

e Bundled with kernel sources: "scripts/gdb". Tied to kernel version (since
globals / structures could change over time).

e Put "vmlinux-gdb.py" and "scripts" next to your vmlinux.

e Add "add-auto-load-safe-path" to "~/.gdbinit"

Google Chrome OS

Demo: 1x- scripts (2)

$ cd /build/kevin/usr/lib/debug/boot
$ find .

./scripts

./scripts/gdb

./scripts/gdb/linux
./scripts/gdb/linux/__init__.py

. /vmlinux

./vmlinux-gdb.py

$ cat ~/.gdbinit
add-auto-load-safe-path /build/kevin/usr/lib/debug/boot/

Google Chrome OS

Demo: 1x- scripts (3)

1x-clk-summary 1x-device-list-class 1lx-iomem 1x-ps
1x-cmdline 1x-device-list-tree 1lx-ioports 1x-symbols
1x-configdump 1x-dmesg 1x-list-check Ix-timerlist
1x-cpus 1x-fdtdump 1x-1smod 1x-version
1x-device-list-bus 1x-genpd-summary 1x-mounts

(gdb) 1x-clk-summary
enable prepare protect

clock count count count rate
xin32k 0 0 0 32768
xin24m 20 21 0 24000000
clk_timer1i1 0 0 0 24000000

Google Chrome OS

Demo: Debugging a 2nd crash (1)

echo SOFTLOCKUP > /sys/kernel/debug/provoke-crash/DIRECT
[45.069040] 1lkdtm: Performing direct entry SOFTLOCKUP
<BREAK>g

[46.921886] sysrq: DEBUG

Entering kdb (current=0xffffff801101a9c0, pid 0) on processor 0 due to Keyboard Entry
[06]kdb>

Can we find the processes what is locked up? Yes (assuming you have a kdb
where "btc" works -- https://lore.kernel.org/patchwork/patch/1108504/)

Google Chrome OS

Demo: Debugging a 2nd crash (2)

e [f we truly don't know why something is stuck, can just do "dumpall" and look
through all the stacks.

If you think something is running, try "btc".

Can also try "ps <state>". See kdb_task state string() for <state>.

Can also try "sr w" to show blocked tasks.

If you have a PID, you can use "btp" to backtrace a PID.

In this case, "btc" works.

Google Chrome OS

Demo: Debugging a 2nd crash (3)

[0]kdb> btc

Stack traceback for pid 1478

oxffffffcoeBach040 1478 728 1 1 R oxffffffcOeBacha30 bash

Call trace:
1kdtm_SOFTLOCKUP+0x1c/0x24
lkdtm_do_action+0x24/0x44
direct_entry+0x130/0x178
full_proxy_write+0x60/0xb4
__vfs_write+0x54/0x18c
vfs_write+0xcc/0x174
ksys_write+0x7c/0xe4
__armé64_sys_write+0x20/0x2c
el@_svc_common+0x9c/0x14c
el0_svc_compat_handler+0x28/0x34
el0_svc_compat+0x8/0x10

Google Chrome OS

Demo: "info thread" in kgdb (1)

e Tasks in Linux are represented as "threads" in kgdb.
e You can see a list of the mapping with "info thread".
e Can be used to point gdb at other tasks, either running or sleeping.

Google Chrome OS

Demo: "info thread" in kgdb (2)

(gdb) set pagination off

(gdb) info thread
Id Target Id Frame
* 1 Thread 4294967294 (shadowCPUO) arch_kgdb_breakpoint () at
.../arch/arm64/include/asm/kgdb.h:21

169 Thread 1478 (bash) cpu_relax () at .../arch/armé4/include/asm/processor.h:248

(gdb) thread 169

[Switching to thread 169 (Thread 1478)]

#0 cpu_relax () at .../arch/armé64/include/asm/processor.h:248
248 asm volatile("yield" ::: "memory");

Google Chrome OS

Demo: kgdb falls on its face (1)

e Kkgdb (on arm64) can't trace past an exception handler because they're not

tagged properly.
e Try the above (soft lockup) without manually breaking into the debugger--let

the soft lockup handler detect it.
e Compare kdb (kernel back trace) with kgdb's backtrace.

Google Chrome OS

Demo: kgdb falls on its face (2)

(gdb) bt
#0 arch_kgdb_breakpoint () at .../v4.19/arch/armé64/include/asm/kgdb.h:21
#1 kgdb_breakpoint () at .../v4.19/kernel/debug/debug_core.c:1135

#17 oxffffff8010081164 in handle_domain_irq (domain=0x1, hwirqg=<optimized out>,
regs=0xffffff80140ebb20)

at .../v4.19/include/linux/irqdesc.h:174
#18 gic_handle_irq (regs=0xffffff806140ebb20) at .../v4.19/drivers/irqchip/irq-gic-v3.c:511
#19 Oxffffff8010082ch8 in el1_irq () at .../v4.19/arch/armé64/kernel/entry.S:670
Backtrace stopped: previous frame identical to this frame (corrupt stack?)

Probably could be fixed with the proper CFl annotations. Patches welcome!

Google Chrome OS

Demo: Breakpoints (1)

e In general kgdb is better for debugging crashes, but breakpoints do still work
and you can still continue after you drop into the debugger.
e \When | tested, | was sometimes unable to delete breakpoints (7).

Google Chrome OS

Demo: Breakpoints (2)

echo g > /proc/sysrq-trigger

(gdb) br pci_try_reset_function
Breakpoint 1 at Oxffffff801044557c: file .../drivers/pci/pci.c, line 5003.

(gdb) c
Continuing.

echo 1 > /sys/kernel/debug/mwifiex/mlan@/reset

Thread 188 hit Breakpoint 1, pci_try_reset_function (dev=0xffffffc0ef4b2880)
at .../drivers/pci/pci.c:5003
5003 {

(gdb)

Google Chrome OS

Demo: modules - the manual way (1)

(gdb) bt

#0 pci_try_reset_function (dev=0xffffffc0ef4b2880) at .../drivers/pci/pci.c:5003
#1 oxffffffgee8af6674 in ?? ()

#2 0x00000000000001c8 in ?? ()

(gdb) monitor lsmod

Module Size modstruct Used by

mwifiex_pcie 32768 oxffffff8ee8afc340 @ (Live) oxffffffgee8af6000 []

mwifiex 245760 Oxffffff8008aecc80 1 (Live) oxffffff8008ab9000 [mwifiex]
cfg80211 598016 Oxffffff8008aa8dcoO 1 (Live) Oxffffff8008a26000 [cfg86211]

Google Chrome OS

Demo: modules - the manual way (2)

(gdb) add-symbol-file .../wireless/marvell/mwifiex/mwifiex.ko.debug oxffffff8008ab9000
(gdb) add-symbol-file .../wireless/marvell/mwifiex/mwifiex_pcie.ko.debug oxffffff8008af6000

(gdb) bt
#0 pci_try_reset_function (dev=0xffffffc0ef4b2880) at .../drivers/pci/pci.c:50
#1 Oxffffff8008af6674 in mwifiex_pcie_card_reset_work (adapter=<optimized out>)

at .../drivers/net/wireless/marvell/mwifiex/pcie.c:2807
#2 mwifiex_pcie_work (work=<optimized out>)
at .../drivers/net/wireless/marvell/mwifiex/pcie.c:2820

#3 Oxffffff8010101b08 in process_one_work (worker=0xffffffcOec2ded80,
work=0xffffffcoe131cce8)
at .../kernel/workqueue.c:2269
#4 Oxffffff8010102038 in worker_thread (__worker=0xffffffcOec2ded80)
at .../kernel/workqueue.c:2415
#5 Oxffffff80610106bd8 in kthread (_create=0xffffffc0da167780) at ...
#6 Oxffffff80100856ac in ret_from_fork () at .../arch/armé64/kernel/entry.S:116

Google Chrome OS

Demo: modules - 1x-symbols

(gdb) 1x-symbols /build/kevin/usr/lib/debug

loading vmlinux

scanning for modules in /build/kevin/usr/lib/debug

scanning for modules in /outside/home/dianders/b/tip/src/third_party/kernel/v4.19

loading @eoxffffff8008af6000: .../marvell/mwifiex/mwifiex_pcie.ko.debug
loading @Oxffffff8008ab9000: .../marvell/mwifiex/mwifiex.ko.debug

NOTE: having this work with Chrome OS split debug (.ko.debug) requires a patch
for now.

Google Chrome OS

Demo: can't stop unstoppable cpus (1)

e On most architectures (like arm64), kgdb stops CPUs by sending them an IPI.
e If a CPU is looping with interrupts disabled then you're out of luck.
e Maybe in the future more architectures will solve this (FIQ on arm647?)

Google Chrome OS

Demo: can't stop unstoppable cpus (2)

echo HARDLOCKUP > /sys/kernel/debug/provoke-crash/DIRECT
[43.981017] 1lkdtm: Performing direct entry HARDLOCKUP
<BREAK>g

[45.672377] sysrq: DEBUG

[46.698158] KGDB: Timed out waiting for secondary CPUs.

Entering kdb (current=0xffffff801101a9c0, pid 0) on processor 0 due to Keyboard Entry
[6]kdb> btc

btc: cpu status: Currently on cpu 0

Available cpus: 0, 1-3(I), 4(D), 5(I)

WARNING: no task for cpu 4

Google Chrome OS

Demo: tricks for optimized code (1)

e Set breakpoint at cros_ec xfer _high_pri() and stop
e See thatin frame 5 (cros_ec console log work()) param is "<optimized out>"

Thread 184 hit Breakpoint 1, cros_ec_xfer_high_pri (ec_dev=0xffffffc0f1088900,
ec_msg=0xffffff8011cabd10, fn=0xffffff80106e59ec <do_cros_ec_pkt_xfer_spi>)
at .../drivers/platform/chrome/cros_ec_spi.c:648

648 {

(gdb) bt

#0 cros_ec_xfer_high_pri (ec_dev=0xffffffc0f1088900, ec_msg=0xffffff8011cabd10,

#5 Oxffffff80106e7d1c in cros_ec_console_log_work (__work=<optimized out>)
at .../drivers/platform/chrome/cros_ec_debugfs.c:76

Google Chrome OS

Demo: tricks for optimized code (2)

e Look elsewhere, like 1 frame up!

(gdb) frame 6
#6 Oxffffff8010101a98 in process_one_work (worker=0xffffffc0d9bdooso,

work=0xffffffcof16de588)
at /mnt/host/source/src/third_party/kernel/v4.19/kernel/workqueue.c:2269

2269 worker->current_func(work) ;

(gdb) print work
$1 = (struct work_struct *) Oxffffffcof16de588

Google Chrome OS

Demo: tricks for optimized code (3)

e Sometimes have to work harder

#5 Oxffffff80106e7d1c in cros_ec_console_log_work (__work=<optimized out>)
at .../drivers/platform/chrome/cros_ec_debugfs.c:76

76 ret = cros_ec_cmd_xfer_status(ec->ec_dev, &snapshot_msg);

(gdb) list cros_ec_console_log_work

57 static void cros_ec_console_log_work(struct work_struct *__work)

58 {

59 struct cros_ec_debugfs *debug_info =

60 container_of (to_delayed_work(__work),
61 struct cros_ec_debugfs,
62 log_poll_work);

(gdb) print debug_info
$4 = <optimized out>

Google Chrome OS

Demo: tricks for optimized code (4)

(gdb) print &((struct cros_ec_debugfs *)0)->log_poll_work->work
$6 = (struct work_struct *) 0x88

(gdb) frame 6
#6 Oxffffff8010101a98 in process_one_work (worker=0xffffffcod9bdooso,
work=0xffffffcof16de588)
at /mnt/host/source/src/third_party/kernel/v4.19/kernel/workqueue.c:2269
2269 worker->current_func(work);

(gdb) print *(struct cros_ec_debugfs *x)((u64)work - 0x88)
$7 = {ec = Oxffffffc0eed496080, dir = OxffffffcOef2308a8, log_buffer = {

buf = oxffffffcoee578080 "[1517.597 AP wants warm reset]\r\nRTC: 0x5d44b563
(1564783971.00 s)\r\n[1517.597 chipset_reset(0)]\r\n[1517.607 ERR-GTH]\r\n[1518.760 event
set 0x08000000]\r\nCO st2\r\nfusb302_tcpm_select_rp_value: 62 vs 61, 19 "..., head = 579,

Google Chrome OS

Demo: tricks for optimized code (5)

e Sometimes might need to look at assembly

e ARMG64 calling convention:

o RO - RY7 are parameters
o RO -R18 aren't preserved across function calls
o R19 - R28 are preserved, so you can rely upon them when debugging

Google Chrome OS

Demo: tricks for optimized code (6)

e Recompile with less optimization
e Sometimes you can get by with a #pragma

Google Chrome OS

Wrapping Up

CCCCCCCC

Conclusion + next steps

e Running with kdb / kgdb enabled as you're developing can be a real
timesaver.

e Not everything always works perfectly, but there's still a lot there.

e It's not as hard as you thought to get setup.

Google Chrome OS

