
Chrome OS

Using Serial kdb / kgdb to
Debug the Linux Kernel

Doug Anderson, Google

Chrome OS

Intro

Chrome OS

About Me
● Random kernel Engineer at Google working on Chrome OS.
● I like debugging.
● I like debuggers.
● Not the author nor maintainer of kdb / kgdb, but I fix bugs sometimes.
● I really only have deep experience with Linux on arm32 / arm64.

Chrome OS

About You 💖💖💖
● You're a kernel Engineer.
● You sometimes run into crashes / hangs / bugs on devices you're working on.
● You have a serial connection to the device you're working on.

○ There are other ways to talk to kdb / kgdb, but I won't cover those.

● You're here in person (or watching a video), since much of this will be demo.
● You like to go for long romantic walks through the woods at night.

Chrome OS

Syllabus
● What is kdb / kgdb?
● What kdb / kgdb are best suited for
● Comparison to similar tools
● Getting setup
● Debugging your first problem
● Debugging your second problem
● Next steps

Chrome OS

What is kdb / kgdb?
● The docs are the authority.

https://www.kernel.org/doc/html/v5.2/dev-tools/kgdb.html
● kdb = The Kernel DeBugger. A simple shell that can do simple peeks/pokes

but also has commands that can print kernel state at time of crash.
● kgdb = The Kernel GDB server. Allows a second computer to run GDB and

debug the kernel.

https://www.kernel.org/doc/html/v5.2/dev-tools/kgdb.html

Chrome OS

Do I want kdb, or kgdb?
● Before my time, I believe you had to pick. Now, you can have both.
● kgdb just lets you use vanilla gdb to debug the kernel. Awesome, but knows

nothing about Linux(*).
● kdb knows about Linux but is not a source level (or even assembly level)

debugger.
● You can enable kgdb without kdb, but why would you? kdb makes a nice

first-level triage and can help with Linux-specifics.

(*) Well, there is "scripts/gdb/linux" to help...

Chrome OS

What can I do at crash time with kdb?
● List all processes
● Dump dmesg
● Dump ftrace buffer
● Backtrace any process
● Send magic sysrq
● Peek/poke memory (I've never used this)

Mostly I just run "dumpall" and save it to a text file, then move over to kgdb.

Chrome OS

What is kgdb good at?
● You need to have stashed away matching symbol files (vmlinux + modules)
● It's as good at debugging code as gdb is

○ When dealing with optimized code, that sometimes means "not very"

● It is slow, but usable
● You can debug any process in the system, though can't always backtrace

past assembly code (which might include interrupts)
● It is far better suited for after-the-crash debugging than single step debugging

○ All CPUs stop and all interrupts are disabled while in the debugger. Not everything handles
that so well.

○ Anything that involves periodic comms with the debugger (watchpoints?) is slooooow
○ Stepping / setting / clearing breakpoints just seems buggy

Chrome OS

kdb/kgdb vs. JTAG
● Much overlap, especially when you point gdb at your JTAG
● JTAG needs dedicated pins and might be tricky to setup
● JTAG software often needs to be updated for each new core type
● JTAG software / hardware is often expensive
● There is no "kdb" over JTAG
● JTAG communication is usually faster, sometimes has extra buffers

tl;dr: kdb / kgdb can cover ~75% of what people use JTAG for and is free / doesn't
require a special setup.

Chrome OS

kdb/kgdb vs. reading the kcrash
● Why bother with kgdb when everything you could need is printed to the

console (or pstore) on panic?
● Panic prints a lot, but not everything. Maybe you need to see the value of a

global variable, or dereference a few pointers.
● Having gdb able to help you make sense of a crash is invaluable.

Chrome OS

kdb/kgdb vs. kdump
● In theory you can set things up to dump tons of stuff about the kernel at crash

time by kexec-ing a dump kernel.
● I've never done this, so maybe someone will do a presentation next year on it.

Chrome OS

Setting Up

Chrome OS

Getting setup - need a serial port
● I said this in the beginning. Weren't you listening?

○ I probably distracted you with the long romantic walks through the woods at night

● Serial driver needs polling support since we run with interrupts off.
○ Not too hard to add. poll_get_char() / poll_put_char()

Chrome OS

Getting setup - kdmx
● Technically not needed.
● Usually run with kernel console + agetty on serial port and want kgdb to share

too. Constantly closing / opening the serial port is a pain.
● kdmx creates two pseudo terminals: one for console+agetty, other for gdb.
● kdmx is more reliable than agent-proxy (a similar tool hosted on the same git

server) and doesn't get your IT folks riled up.
● Known issue: every once in a while kdmx gets confused and keeps echoing

"-". If that happens, just restart it.

Hosted at https://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

Chrome OS

kdmx is not too hard to set up
$ mkdir -p /tmp/kdmx_is_not_hard
$ cd /tmp/kdmx_is_not_hard
$ git clone git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git .
$ cd kdmx
$ make
$./kdmx -n -p "/dev/ttyUSB0" -s /tmp/kdmx_ports &
$ cu --nostop -l $(cat /tmp/kdmx_ports_trm)

When debugging
$ ${CROSS_ARCH}-gdb /path/to/vmlinux \
 -ex "target remote $(cat /tmp/kdmx_ports_gdb)"

(could use something besides "cu" if you want)

Chrome OS

Getting setup - gdb
● You'll need a cross-compiled version of GDB.
● AKA: if your host is x86_64 and your target is aarch64 then you need gdb that

can run in x86_64 but can debug an aarch64 target.
● Presumably comes from the same place your compiler comes from.

Chrome OS

gdb is not too hard to set up
● Setting up gdb is way beyond the scope of this talk.
● If you don't have gdb that works, seek professional help.
● If you actually know how to set up gdb yourself, seek professional help.

Chrome OS

Getting setup - kernel config
$ cat <<EOF >> .config
CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_KGDB=y
CONFIG_KGDB_KDB=y
CONFIG_PANIC_TIMEOUT=0
CONFIG_RANDOMIZE_BASE=n
CONFIG_WATCHDOG=n
CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE=1
EOF

$ cat <<EOF >> .config
CONFIG_DEBUG_KERNEL=y
CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_INFO_DWARF4=y
CONFIG_FRAME_POINTER=y
CONFIG_GDB_SCRIPTS=y
EOF

Chrome OS

Getting setup - command line params
● Imagine your serial port is ttyS2, then you need on your kernel command line:

○ kgdboc=ttyS2

● For good measure:
○ console=ttyS2,115200n8 oops=panic panic=0 kgdboc=ttyS2

The "oc" in kgdboc is supposed to be "over console". You can actually get kgdb to
run over a port even if it's not the console port, though.

Chrome OS

Demo

Chrome OS

Dropping into the debugger
● Magic sysrq is the nicest way, but not always simple:

○ External keyboard: Alt-PrintScr-G
○ Command line shell: 'echo g > /proc/sysrq-trigger'
○ Send "BREAK-G" over serial port, but:

■ Break is hard to send over pseudo-terminals. kdmx allows ~B, but might be eaten up by
the next level (on a Chromebook, servod eats but provides its own escape sequence)

■ Relies on userspace having an agetty running because otherwise nobody is listening

● Hardcode a breakpoint into your code: kgdb_breakpoint()
● Cause an oops / panic
● Make your own debug trigger by adding kgdb_breakpoint() into an IRQ

handler

Chrome OS

Debugging your first problem
localhost ~ # echo WRITE_KERN > /sys/kernel/debug/provoke-crash/DIRECT
[35.634506] lkdtm: Performing direct entry WRITE_KERN
[35.640172] lkdtm: attempting bad 18446744073709551584 byte write at ffffff80105657b8
[35.648943] Unable to handle kernel write to read-only memory at virtual address ...
...
Entering kdb (current=0xffffffc0de55f040, pid 1470) on processor 4 Oops: (null)
due to oops @ 0xffffff80108bfa48
CPU: 4 PID: 1470 Comm: bash Not tainted 5.3.0-rc2+ #13
Hardware name: Google Kevin (DT)
pstate: 00000005 (nzcv daif -PAN -UAO)
pc : __memcpy+0x48/0x180
lr : lkdtm_WRITE_KERN+0x4c/0x90
...

[4]kdb>

Chrome OS

Demo: 'bt'
[4]kdb> bt
Stack traceback for pid 1470
0xffffffc0de55f040 1470 721 1 4 R 0xffffffc0de55fa30 *bash
Call trace:
 dump_backtrace+0x0/0x138
 show_stack+0x20/0x2c
 kdb_show_stack+0x60/0x84
 ...
 do_mem_abort+0x4c/0xb4
 el1_da+0x20/0x94
 __memcpy+0x48/0x180
 lkdtm_do_action+0x24/0x44
 direct_entry+0x130/0x178
 ...

[4]kdb>

Chrome OS

Demo: 'dumpall'
[4]kdb> dumpall
[dumpall]kdb> pid R

KDB current process is bash(pid=1470)
[dumpall]kdb> -dumpcommon

[dumpcommon]kdb> set BTAPROMPT 0

[dumpcommon]kdb> set LINES 10000

[dumpcommon]kdb> -summary

sysname Linux
release 5.3.0-rc2+
version #13 SMP PREEMPT Mon Jul 29 14:52:19 PDT 2019
machine aarch64
nodename localhost
domainname (none)
date 2019-07-29 21:54:10 tz_minuteswest 0
uptime 00:05
load avg 1.08 0.33 0.11

MemTotal: 3963548 kB
MemFree: 3552620 kB
Buffers: 10788 kB
[dumpcommon]kdb> -cpu

Currently on cpu 4
Available cpus: 0(I), 1, 2-3(I), 4, 5(I)
[dumpcommon]kdb> -ps

4 idle processes (state I) and
49 sleeping system daemon (state M) processes suppressed,
use 'ps A' to see all.
Task Addr Pid Parent [*] cpu State Thread Command
0xffffffc0ea4e3040 364 2 1 1 R 0xffffffc0ea4e3a30 loop0
0xffffffc0de55f040 1470 721 1 4 R 0xffffffc0de55fa30 *bash

0xffffffc0f16d8040 1 0 0 5 S 0xffffffc0f16d8a30 init
0xffffffc0f16d9040 3 2 0 0 D 0xffffffc0f16d9a30 rcu_gp
0xffffffc0f16de040 4 2 0 0 D 0xffffffc0f16dea30 rcu_par_gp
0xffffffc0f16da040 5 2 0 0 D 0xffffffc0f16daa30 kworker/0:0
0xffffffc0f16dd040 6 2 0 0 D 0xffffffc0f16dda30 kworker/0:0H
0xffffffc0f16db040 7 2 0 1 D 0xffffffc0f16dba30 kworker/u12:0
0xffffffc0f16dc040 8 2 0 0 D 0xffffffc0f16dca30 mm_percpu_wq
0xffffffc0f1757040 10 2 0 2 D 0xffffffc0f1757a30 rcu_preempt
0xffffffc0f17ae040 15 2 0 1 R 0xffffffc0f17aea30 ksoftirqd/1
0xffffffc0f17aa040 16 2 0 1 D 0xffffffc0f17aaa30 kworker/1:0
0xffffffc0f17ad040 17 2 0 1 D 0xffffffc0f17ada30 kworker/1:0H
0xffffffc0f17c7040 21 2 0 2 D 0xffffffc0f17c7a30 kworker/2:0
0xffffffc0f17c1040 22 2 0 2 D 0xffffffc0f17c1a30 kworker/2:0H
0xffffffc0f17c3040 26 2 0 3 D 0xffffffc0f17c3a30 kworker/3:0
0xffffffc0f17c4040 27 2 0 3 D 0xffffffc0f17c4a30 kworker/3:0H
0xffffffc0f101e040 31 2 0 4 D 0xffffffc0f101ea30 kworker/4:0
0xffffffc0f101a040 32 2 0 4 D 0xffffffc0f101aa30 kworker/4:0H
0xffffffc0f1038040 36 2 0 5 D 0xffffffc0f1038a30 kworker/5:0
0xffffffc0f103f040 37 2 0 5 D 0xffffffc0f103fa30 kworker/5:0H
0xffffffc0f103e040 39 2 0 4 D 0xffffffc0f103ea30 netns
0xffffffc0f103b040 42 2 0 5 D 0xffffffc0f103ba30 kworker/5:1
0xffffffc0f103c040 43 2 0 2 D 0xffffffc0f103ca30 kworker/2:1
0xffffffc0f0f90040 44 2 0 0 D 0xffffffc0f0f90a30 kworker/0:1
0xffffffc0f0f97040 45 2 0 4 D 0xffffffc0f0f97a30 kworker/4:1
0xffffffc0f0f92040 48 2 0 2 D 0xffffffc0f0f92a30 writeback
0xffffffc0f0bf8040 52 2 0 4 D 0xffffffc0f0bf8a30 kworker/u12:1
0xffffffc0f04f1040 70 2 0 5 D 0xffffffc0f04f1a30 cryptd
0xffffffc0f0506040 79 2 0 1 D 0xffffffc0f0506a30 kworker/1:1
0xffffffc0f0556040 88 2 0 3 D 0xffffffc0f0556a30 kblockd
0xffffffc0f0551040 89 2 0 4 D 0xffffffc0f0551a30 tpm_dev_wq

Chrome OS

Demo: 'dumpall' (for real)
● So much stuff it can't possibly fit on a slide.
● Some random status that I rarely look at.
● Outputs the end of dmesg (you can get more if you want).
● Lists all processes in a clean-ish format.
● Dumps stacks for all processes, which can be quite useful.

Chrome OS

Demo: sr (run sysrq)
[4]kdb> sr m
sysrq: Show Memory
Mem-Info:
active_anon:3312 inactive_anon:103 isolated_anon:0
 active_file:6808 inactive_file:36140 isolated_file:0
 unevictable:15000 dirty:2522 writeback:5587 unstable:0
 ...
58097 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
1015040 pages RAM
0 pages HighMem/MovableOnly
24153 pages reserved
4096 pages cma reserved

Chrome OS

Demo: kgdb
● Can (but usually don't need to) enter kgdb from kdb using "kgdb" command.
● You'll point gdb at the pseudo-tty opened by kdmx.
● Remember you need to have kept your symbols around.

Chrome OS

Demo: kgdb attaching
$ aarch64-cros-linux-gnu-gdb \
 /build/${BOARD}/usr/lib/debug/boot/vmlinux \
 -ex "target remote $(cat /tmp/kdmx_ports_gdb)"
...
...
Reading symbols from /build/kevin/usr/lib/debug/boot/vmlinux...done.
Remote debugging using /dev/pts/89
memcpy () at .../arch/arm64/lib/copy_template.S:94
94 stp1 A_l, A_h, dst, #16

(gdb)

Chrome OS

Demo: kgdb 'bt'
(gdb) bt
#0 memcpy () at .../arch/arm64/lib/copy_template.S:94
#1 0xffffff801056584c in lkdtm_WRITE_KERN ()
 at .../drivers/misc/lkdtm/perms.c:116
#2 0xffffff8010564d14 in lkdtm_do_action (crashtype=0xffffff8010a8aa00 <crashtypes+608>)
 at .../drivers/misc/lkdtm/core.c:221
#3 0xffffff8010564c90 in direct_entry (f=<optimized out>, user_buf=<optimized out>,
 count=11, off=0xffffff8011d9bdf0)
 at .../drivers/misc/lkdtm/core.c:382
...
#15 0xffffff80100830f8 in el0_sync () at .../arch/arm64/kernel/entry.S:779
Backtrace stopped: Cannot access memory at address 0xffffff8011de40d8

(Backtrace stopped message is normal)

Chrome OS

Demo: kgdb 'disass /s'
(gdb) disass /s
Dump of assembler code for function memcpy:
.../arch/arm64/lib/copy_template.S:
42 mov dst, dstin
 0xffffff80108bfb40 <+0>: mov x6, x0
...
94 stp1 A_l, A_h, dst, #16
=> 0xffffff80108bfbb4 <+116>: stp x7, x8, [x6], #16

(gdb) print /x $x6
$1 = 0xffffff8010565890

(gdb) info symbol $x6
do_overwritten in section .text

Chrome OS

Demo: need to know assembly???
● Can get by without knowing assembly, but helps to not be too afraid of it since

you end up there sometimes.
● Good to know basics, like "stp x7, x8, [x6], #16" writes registers x7/x8 to

(roughly) the memory location pointed to by x6. Can always search the web!
● Sometimes assembly can help you figure out the value of a variable when

gdb claims "<optimized out>".

Chrome OS

Demo: kgdb 'info reg'
(gdb) info reg
x0 0xffffff8010565890 -549481719664
x1 0xffffff80105658c0 -549481719616
x2 0xffffffffffffffe0 -32
x3 0x20 32
x4 0x0 0
x5 0x0 0
x6 0xffffff8010565890 -549481719664
...
sp 0xffffff8011d9bc40 0xffffff8011d9bc40
pc 0xffffff80108bfbb4 0xffffff80108bfbb4 <memcpy+116>
cpsr 0x60000005 [SP EL=2 C Z]
fpsr 0x0 0
fpcr 0x0 0

Chrome OS

Demo: kgdb back to C (1)
(gdb) frame 1
#1 0xffffff801056584c in lkdtm_WRITE_KERN () at .../drivers/misc/lkdtm/perms.c:116
116 memcpy(ptr, (unsigned char *)do_nothing, size);

(gdb) list
111
112 size = (unsigned long)do_overwritten - (unsigned long)do_nothing;
113 ptr = (unsigned char *)do_overwritten;
114
115 pr_info("attempting bad %zu byte write at %px\n", size, ptr);
116 memcpy(ptr, (unsigned char *)do_nothing, size);
117 flush_icache_range((unsigned long)ptr, (unsigned long)(ptr + size));
118
119 do_overwritten();
120 }

Chrome OS

Demo: kgdb back to C (2)
(gdb) print ptr
$2 = (unsigned char *) 0xffffff8010565890 <do_overwritten> "\375{\277\251\375\003"

(gdb) print size
$3 = 18446744073709551584

(gdb) print do_overwritten - do_nothing
$4 = -32

(gdb) print (unsigned long)(do_overwritten - do_nothing)
$13 = 18446744073709551584

(I wonder if that huge number was intentional)

Chrome OS

Demo: kgdb = pretty handy (1)
(gdb) frame 2
#2 0xffffff8010564d14 in lkdtm_do_action (crashtype=0xffffff8010a8aa00 <crashtypes+608>)
 at .../drivers/misc/lkdtm/core.c:221
221 crashtype->func();

(gdb) print crashtype
$5 = (const struct crashtype *) 0xffffff8010a8aa00 <crashtypes+608>

(gdb) print *crashtype
$6 = {name = 0xffffff8010bfe2d9 "WRITE_KERN", func = 0xffffff8010565800 <lkdtm_WRITE_KERN>}

Chrome OS

Demo: kgdb = pretty handy (2)
(gdb) frame 5
#5 0xffffff801026d288 in __vfs_write (file=0xffffffc0eacf3340, p=0x13ac588
 "WRITE_KERN\nrcolors\n", count=11, pos=0xffffff8011d9bdf0) at .../fs/read_write.c:494
494 return file->f_op->write(file, p, count, pos);

(gdb) print *file
$7 = {f_u = {fu_llist = {next = 0x0}, fu_rcuhead = {next = 0x0, func = 0x0}}, f_path = {
 mnt = 0xffffffc0f104fce0, dentry = 0xffffffc0ef13b1a0},
 f_inode = 0xffffffc0ef13c008, f_op = 0xffffffc0dd407c80, f_lock = {{rlock = {
 raw_lock = {{val = {counter = 0}, {locked = 0 '\000', pending = 0 '\000'}, {
 locked_pending = 0, tail = 0}}}, magic = 3735899821,
 owner_cpu = 4294967295, owner = 0xffffffffffffffff}}},
 f_write_hint = WRITE_LIFE_NOT_SET, f_count = {counter = 1}, f_flags = 131073,
 ...

Chrome OS

Demo: kgdb = pretty handy (3)
(gdb) set print pretty on

(gdb) set pagination off

(gdb) print *file
$8 = {
 f_u = {
 fu_llist = {
 next = 0x0
 },
 fu_rcuhead = {
 next = 0x0,
 func = 0x0
 }
 },
 ...

Chrome OS

Demo: kdb commands through kgdb
(gdb) monitor lsmod
Module Size modstruct Used by
btusb 40960 0xffffff8008bdb140 0 (Live) 0xffffff8008bd3000 []
btrtl 16384 0xffffff8008b3f040 1 (Live) 0xffffff8008b3d000 [btrtl]
btbcm 16384 0xffffff8008bc4040 1 (Live) 0xffffff8008bc2000 [btbcm]
btintel 20480 0xffffff8008b0f140 1 (Live) 0xffffff8008b0c000 [btintel]
...

(gdb) monitor dumpall
[dumpall]kdb> pid R

KDB current process is swapper/0(pid=0)
[dumpall]kdb> -dumpcommon

...

Chrome OS

Demo: lx- scripts (1)
● There are python scripts that work with gdb to parse / interpret kernel global

data structures.
● Bundled with kernel sources: "scripts/gdb". Tied to kernel version (since

globals / structures could change over time).
● Put "vmlinux-gdb.py" and "scripts" next to your vmlinux.
● Add "add-auto-load-safe-path" to "~/.gdbinit"

Chrome OS

Demo: lx- scripts (2)
$ cd /build/kevin/usr/lib/debug/boot

$ find .
.
./scripts
./scripts/gdb
./scripts/gdb/linux
...
./scripts/gdb/linux/__init__.py
./vmlinux
./vmlinux-gdb.py

$ cat ~/.gdbinit
add-auto-load-safe-path /build/kevin/usr/lib/debug/boot/

Chrome OS

Demo: lx- scripts (3)
lx-clk-summary lx-device-list-class lx-iomem lx-ps
lx-cmdline lx-device-list-tree lx-ioports lx-symbols
lx-configdump lx-dmesg lx-list-check lx-timerlist
lx-cpus lx-fdtdump lx-lsmod lx-version
lx-device-list-bus lx-genpd-summary lx-mounts

(gdb) lx-clk-summary
 enable prepare protect
 clock count count count rate
--
 xin32k 0 0 0 32768
 xin24m 20 21 0 24000000
 clk_timer11 0 0 0 24000000

Chrome OS

Demo: Debugging a 2nd crash (1)
echo SOFTLOCKUP > /sys/kernel/debug/provoke-crash/DIRECT
[45.069040] lkdtm: Performing direct entry SOFTLOCKUP
<BREAK>g
[46.921886] sysrq: DEBUG

Entering kdb (current=0xffffff801101a9c0, pid 0) on processor 0 due to Keyboard Entry
[0]kdb>

Can we find the processes what is locked up? Yes (assuming you have a kdb
where "btc" works -- https://lore.kernel.org/patchwork/patch/1108504/)

Chrome OS

Demo: Debugging a 2nd crash (2)
● If we truly don't know why something is stuck, can just do "dumpall" and look

through all the stacks.
● If you think something is running, try "btc".
● Can also try "ps <state>". See kdb_task_state_string() for <state>.
● Can also try "sr w" to show blocked tasks.
● If you have a PID, you can use "btp" to backtrace a PID.
● In this case, "btc" works.

Chrome OS

Demo: Debugging a 2nd crash (3)
[0]kdb> btc
...
Stack traceback for pid 1478
0xffffffc0e0acb040 1478 728 1 1 R 0xffffffc0e0acba30 bash
Call trace:
 lkdtm_SOFTLOCKUP+0x1c/0x24
 lkdtm_do_action+0x24/0x44
 direct_entry+0x130/0x178
 full_proxy_write+0x60/0xb4
 __vfs_write+0x54/0x18c
 vfs_write+0xcc/0x174
 ksys_write+0x7c/0xe4
 __arm64_sys_write+0x20/0x2c
 el0_svc_common+0x9c/0x14c
 el0_svc_compat_handler+0x28/0x34
 el0_svc_compat+0x8/0x10

Chrome OS

Demo: "info thread" in kgdb (1)
● Tasks in Linux are represented as "threads" in kgdb.
● You can see a list of the mapping with "info thread".
● Can be used to point gdb at other tasks, either running or sleeping.

Chrome OS

Demo: "info thread" in kgdb (2)
(gdb) set pagination off

(gdb) info thread
 Id Target Id Frame
* 1 Thread 4294967294 (shadowCPU0) arch_kgdb_breakpoint () at
 .../arch/arm64/include/asm/kgdb.h:21
 ...
 169 Thread 1478 (bash) cpu_relax () at .../arch/arm64/include/asm/processor.h:248

(gdb) thread 169
[Switching to thread 169 (Thread 1478)]
#0 cpu_relax () at .../arch/arm64/include/asm/processor.h:248
248 asm volatile("yield" ::: "memory");

Chrome OS

Demo: kgdb falls on its face (1)
● kgdb (on arm64) can't trace past an exception handler because they're not

tagged properly.
● Try the above (soft lockup) without manually breaking into the debugger--let

the soft lockup handler detect it.
● Compare kdb (kernel back trace) with kgdb's backtrace.

Chrome OS

Demo: kgdb falls on its face (2)
(gdb) bt
#0 arch_kgdb_breakpoint () at .../v4.19/arch/arm64/include/asm/kgdb.h:21
#1 kgdb_breakpoint () at .../v4.19/kernel/debug/debug_core.c:1135
...
#17 0xffffff8010081164 in handle_domain_irq (domain=0x1, hwirq=<optimized out>,
regs=0xffffff80140ebb20)
 at .../v4.19/include/linux/irqdesc.h:174
#18 gic_handle_irq (regs=0xffffff80140ebb20) at .../v4.19/drivers/irqchip/irq-gic-v3.c:511
#19 0xffffff8010082cb8 in el1_irq () at .../v4.19/arch/arm64/kernel/entry.S:670
Backtrace stopped: previous frame identical to this frame (corrupt stack?)

Probably could be fixed with the proper CFI annotations. Patches welcome!

Chrome OS

Demo: Breakpoints (1)
● In general kgdb is better for debugging crashes, but breakpoints do still work

and you can still continue after you drop into the debugger.
● When I tested, I was sometimes unable to delete breakpoints (?).

Chrome OS

Demo: Breakpoints (2)
echo g > /proc/sysrq-trigger

(gdb) br pci_try_reset_function
Breakpoint 1 at 0xffffff801044557c: file .../drivers/pci/pci.c, line 5003.
(gdb) c
Continuing.

echo 1 > /sys/kernel/debug/mwifiex/mlan0/reset

Thread 188 hit Breakpoint 1, pci_try_reset_function (dev=0xffffffc0ef4b2880)
 at .../drivers/pci/pci.c:5003
5003 {
(gdb)

Chrome OS

Demo: modules - the manual way (1)
(gdb) bt
#0 pci_try_reset_function (dev=0xffffffc0ef4b2880) at .../drivers/pci/pci.c:5003
#1 0xffffff8008af6674 in ?? ()
#2 0x00000000000001c8 in ?? ()

(gdb) monitor lsmod
Module Size modstruct Used by
...
mwifiex_pcie 32768 0xffffff8008afc340 0 (Live) 0xffffff8008af6000 []
mwifiex 245760 0xffffff8008aecc80 1 (Live) 0xffffff8008ab9000 [mwifiex]
cfg80211 598016 0xffffff8008aa8dc0 1 (Live) 0xffffff8008a26000 [cfg80211]

Chrome OS

Demo: modules - the manual way (2)
(gdb) add-symbol-file .../wireless/marvell/mwifiex/mwifiex.ko.debug 0xffffff8008ab9000
(gdb) add-symbol-file .../wireless/marvell/mwifiex/mwifiex_pcie.ko.debug 0xffffff8008af6000

(gdb) bt
#0 pci_try_reset_function (dev=0xffffffc0ef4b2880) at .../drivers/pci/pci.c:50
#1 0xffffff8008af6674 in mwifiex_pcie_card_reset_work (adapter=<optimized out>)
 at .../drivers/net/wireless/marvell/mwifiex/pcie.c:2807
#2 mwifiex_pcie_work (work=<optimized out>)
 at .../drivers/net/wireless/marvell/mwifiex/pcie.c:2820
#3 0xffffff8010101b08 in process_one_work (worker=0xffffffc0ec2ded80,
 work=0xffffffc0e131cce8)
 at .../kernel/workqueue.c:2269
#4 0xffffff8010102038 in worker_thread (__worker=0xffffffc0ec2ded80)
 at .../kernel/workqueue.c:2415
#5 0xffffff8010106bd8 in kthread (_create=0xffffffc0da167780) at ...
#6 0xffffff80100856ac in ret_from_fork () at .../arch/arm64/kernel/entry.S:116

Chrome OS

Demo: modules - lx-symbols
(gdb) lx-symbols /build/kevin/usr/lib/debug
loading vmlinux
scanning for modules in /build/kevin/usr/lib/debug
scanning for modules in /outside/home/dianders/b/tip/src/third_party/kernel/v4.19
...
loading @0xffffff8008af6000: .../marvell/mwifiex/mwifiex_pcie.ko.debug
loading @0xffffff8008ab9000: .../marvell/mwifiex/mwifiex.ko.debug

NOTE: having this work with Chrome OS split debug (.ko.debug) requires a patch
for now.

Chrome OS

Demo: can't stop unstoppable cpus (1)
● On most architectures (like arm64), kgdb stops CPUs by sending them an IPI.
● If a CPU is looping with interrupts disabled then you're out of luck.
● Maybe in the future more architectures will solve this (FIQ on arm64?)

Chrome OS

Demo: can't stop unstoppable cpus (2)
echo HARDLOCKUP > /sys/kernel/debug/provoke-crash/DIRECT
[43.981017] lkdtm: Performing direct entry HARDLOCKUP
<BREAK>g
[45.672377] sysrq: DEBUG
[46.698158] KGDB: Timed out waiting for secondary CPUs.

Entering kdb (current=0xffffff801101a9c0, pid 0) on processor 0 due to Keyboard Entry
[0]kdb> btc
btc: cpu status: Currently on cpu 0
Available cpus: 0, 1-3(I), 4(D), 5(I)
...
WARNING: no task for cpu 4
...

Chrome OS

Demo: tricks for optimized code (1)
● Set breakpoint at cros_ec_xfer_high_pri() and stop
● See that in frame 5 (cros_ec_console_log_work()) param is "<optimized out>"

Thread 184 hit Breakpoint 1, cros_ec_xfer_high_pri (ec_dev=0xffffffc0f1088900,
 ec_msg=0xffffff8011cabd10, fn=0xffffff80106e59ec <do_cros_ec_pkt_xfer_spi>)
 at .../drivers/platform/chrome/cros_ec_spi.c:648
648 {
(gdb) bt
#0 cros_ec_xfer_high_pri (ec_dev=0xffffffc0f1088900, ec_msg=0xffffff8011cabd10,
...
#5 0xffffff80106e7d1c in cros_ec_console_log_work (__work=<optimized out>)
 at .../drivers/platform/chrome/cros_ec_debugfs.c:76

Chrome OS

Demo: tricks for optimized code (2)
● Look elsewhere, like 1 frame up!

(gdb) frame 6
#6 0xffffff8010101a98 in process_one_work (worker=0xffffffc0d9bd0080,
 work=0xffffffc0f16de588)
 at /mnt/host/source/src/third_party/kernel/v4.19/kernel/workqueue.c:2269
2269 worker->current_func(work);

(gdb) print work
$1 = (struct work_struct *) 0xffffffc0f16de588

Chrome OS

Demo: tricks for optimized code (3)
● Sometimes have to work harder

#5 0xffffff80106e7d1c in cros_ec_console_log_work (__work=<optimized out>)
 at .../drivers/platform/chrome/cros_ec_debugfs.c:76
76 ret = cros_ec_cmd_xfer_status(ec->ec_dev, &snapshot_msg);
(gdb) list cros_ec_console_log_work
...
57 static void cros_ec_console_log_work(struct work_struct *__work)
58 {
59 struct cros_ec_debugfs *debug_info =
60 container_of(to_delayed_work(__work),
61 struct cros_ec_debugfs,
62 log_poll_work);
(gdb) print debug_info
$4 = <optimized out>

Chrome OS

Demo: tricks for optimized code (4)
(gdb) print &((struct cros_ec_debugfs *)0)->log_poll_work->work
$6 = (struct work_struct *) 0x88

(gdb) frame 6
#6 0xffffff8010101a98 in process_one_work (worker=0xffffffc0d9bd0080,
 work=0xffffffc0f16de588)
 at /mnt/host/source/src/third_party/kernel/v4.19/kernel/workqueue.c:2269
2269 worker->current_func(work);

(gdb) print *(struct cros_ec_debugfs *)((u64)work - 0x88)
$7 = {ec = 0xffffffc0ee496080, dir = 0xffffffc0ef2308a8, log_buffer = {
 buf = 0xffffffc0ee578080 "[1517.597 AP wants warm reset]\r\nRTC: 0x5d44b563
(1564783971.00 s)\r\n[1517.597 chipset_reset(0)]\r\n[1517.607 ERR-GTH]\r\n[1518.760 event
set 0x08000000]\r\nC0 st2\r\nfusb302_tcpm_select_rp_value: 62 vs 61, 19 "..., head = 579,

Chrome OS

Demo: tricks for optimized code (5)
● Sometimes might need to look at assembly
● ARM64 calling convention:

○ R0 - R7 are parameters
○ R0 - R18 aren't preserved across function calls
○ R19 - R28 are preserved, so you can rely upon them when debugging

Chrome OS

Demo: tricks for optimized code (6)
● Recompile with less optimization
● Sometimes you can get by with a #pragma

Chrome OS

Wrapping Up

Chrome OS

Conclusion + next steps
● Running with kdb / kgdb enabled as you're developing can be a real

timesaver.
● Not everything always works perfectly, but there's still a lot there.
● It's not as hard as you thought to get setup.

