
CONFIDENTIAL Copyright 2010 Sony Network Entertainment Copyright 2012 Sony Network Entertainment

Embedded-Appropriate
Crash Handling

Tim Bird
Sony Network Entertainment

Copyright 2012 Sony Network Entertainment

Agenda

 Characterize the problem

 Anatomy of a crash

 Linux features to leverage

 Existing approaches

 Describe my solution

 Point to some resources

2/1/12

Copyright 2012 Sony Network Entertainment

The problem

• Stuff crashes

• By Stuff, I’m talking about user-space programs

• Kernel crash handling is a separate topic

• Developers and support personnel want as
much information at possible to fix problems

• Various attributes of embedded products
make this interesting

• Tradeoffs required

2/1/12

Copyright 2012 Sony Network Entertainment

 Information to report

• Need to provide enough information to figure
out what went wrong

• It is easy to report instruction that crashed

• Harder to report what happened leading up to
that instruction

• Default method is to dump the whole "core" of
the file, and let the engineer use a debugger

• Even this doesn't capture the entire machine state - only the
state of the one process that crashed

• This doesn’t include history

2/1/12

Copyright 2012 Sony Network Entertainment

Embedded issues

• Constrained memory, storage and CPU

• Fixed workload

• Limited or intermittent connectivity

• Limited user interface

• Need illusion of continued operation

• Off-device processing

2/1/12

Copyright 2012 Sony Network Entertainment

Constrained space

• Memory, File system, logs -- pretty much everything

• Affects space for storing crash information

• Have worked on device with 4M RAM

• On TV devices, had a 64K exception reporting budget

• No symbols on the target!

• No tools on the target!

• Limited logging

• Some embedded systems even turn off printk!

• Reports need to be concise, but still provide enough
information

2/1/12

Copyright 2012 Sony Network Entertainment

Constrained CPU

• Embedded processors are often

under-spec’ed

• Especially at hardware-driven companies

• No extra cycles to dedicate to

runtime analysis and logging

• Tracers are almost never an option

2/1/12

Copyright 2012 Sony Network Entertainment

Fixed workload

• Some embedded products have fixed
software

• Have a fixed set of processes

• May have deterministic pids

• May not need to save some information

2/1/12

Copyright 2012 Sony Network Entertainment

Sparse connectivity

• Some devices don’t have regular connectivity

• Report may be saved a long time

• Crash may be un-noticed to user

• E.g. process crash on TV - looks like video hiccup

• When the crash report is transmitted logs have
cycled and are useless

• Need to preserve some log info at time of crash

• How much to preserve at crash time?

• How persistent to make the logs and reports

• ramfs vs. long-term storage

2/1/12

Copyright 2012 Sony Network Entertainment

Limited user interfaces

• Devices with limited interfaces may be
difficult to get permission

• E.g. Walkman audio player

• Security/privacy issues with logs and
crash_reports

• Need user permission to send crash reports

2/1/12

Copyright 2012 Sony Network Entertainment

Off-device analysis issues

• What can be deferred to off-device, post-
mortem analysis?

• Biggest issue is mapping addresses to symbols

• If you save whole stack, you can do unwinding on host

• Must ensure to keep symbols around on the
host

• My experience is that you frequently can’t find or rebuild
exactly matching binaries

• I know this is terrible

2/1/12

Copyright 2012 Sony Network Entertainment

Fixed-up mapfile generator

• Wrote special symbol converter with fuzzy
matching

• Em-log-process

• Can produce fixed-up maps from stripped
binaries (from target) and unstripped binaries
generated on host

• Observation: Functions shrink or stretch only a little bit
between versions (size locality)

2/1/12

Copyright 2012 Sony Network Entertainment

Anatomy of a crash

• When a program crashes, kernel sends signal
to dying process

• Signals which cause a core dump are specified in ‘man 7
signal’

• Can perform some functionality, before process death

• After signal handler returns

• Kernel may create a ‘core’ file

• Depending on settings – ‘man 5 core’

2/1/12

Copyright 2012 Sony Network Entertainment

Getting control when a crash occurs

• 1) While process is still active

• Signal handler

• Runs in process context

• Can run on alternate stack

• Memory state may be corrupted

• It may be unsafe to proceed internally

• Can contact an external agent

• 2) From kernel, right before exit

2/1/12

Copyright 2012 Sony Network Entertainment

Where to get information to save

• /proc

• Ptrace

• Logs

• Traces

2/1/12

Copyright 2012 Sony Network Entertainment

/proc

• Is available during signals, as well as during
core generation

• /proc is present as long as process has not been killed

• Stuff from /proc

• maps, command line, stat, open files

2/1/12

Copyright 2012 Sony Network Entertainment

ptrace

• Registers

• Including PC, SP, link register (return address)

• Stack, text and data

• Including memory maps for shared libraries

• Also ELF sections

• Used for unwind tables, possibly symbols

2/1/12

Copyright 2012 Sony Network Entertainment

Logs and traces

• Logs

• /dev/kmsg

• Syslog

• Android log?

• Traces

• Strace

• Ftrace

• Perf

• Lttng buffer

• Need to filter to conserve space

2/1/12

Copyright 2012 Sony Network Entertainment

Approaches to Crash handling

• Core files

• Desktop crash handling

• Android debuggerd

2/1/12

Copyright 2012 Sony Network Entertainment

Core files

• Linux creates a file with a snapshot of the memory image of the
dying process

• Intent is to allow use of a debugger on that image

• If your process has weird permissions (is suid) a core is not
generated automatically

• Configure /proc/sys/fs/suid_dumpable to fix

• /proc/sys/kernel/core_pattern

• Originally used to control name of core file

• Since 2.6.19, can specify a ‘pipe’ to send the core file to

• Pattern string starts with ‘|’

• Kernel can pass process information to core file handler with command line args

• Core file handler can access /proc and use ptrace on dying process

2/1/12

Copyright 2012 Sony Network Entertainment

Desktop crash handling

• ABRT – Automatic Bug Reporting System

• Modular, with plugins for different languages (C, Python),
different reporters, databases for crash reports

• Crash reports have lots of information, about kernel, package,
machine environment

• abrt-gui – Can view crash database, manipulate reports,
configure plugins

• Needs separate ‘–debuginfo’ packages installed

• Uses sqlite backend for crash data

• Too heavy-weight for embedded

2/1/12

Copyright 2012 Sony Network Entertainment

Android debuggerd

• Very cool embedded-specific crash handler

• Used on all android devices

• Crash report data placed in log and in
tombstone file

• Debuggerd also facilitates connecting
debugger to dying process

• Can halt and wait for gdb to attach to the process

• Is Apache-licensed

2/1/12

Copyright 2012 Sony Network Entertainment

Debuggerd (cont.)

• How does it work:

• Debuggerd is a crash-handling daemon that is always running

• Adds default signal handler to each process, which handles any
signals that generate core

• Included in bionic – every application gets it

• Signal handler captures deadly signal and contacts debuggerd

• Debuggerd records information using ptrace (registers, stack,
memory areas), and /proc

• Is aware of emulator

• Does some extra stuff if running under emulator

2/1/12

Copyright 2012 Sony Network Entertainment

Miscelaneous features

• Has builtin ARM stack unwinder for
generating a backtrace

• Automatically rotates a fixed number of crash
reports

2/1/12

Copyright 2012 Sony Network Entertainment

Some notes on unwinding

• Unwinding = processing stack and memory
image to create a backtrace

• Backtrace is very compact - summarizes stack
information nicely

• Local variables usually not available

• Different methods available, depending on
compilation flags

2/1/12

Copyright 2012 Sony Network Entertainment

Unwinding methods

• Frame pointers

• Unwind tables

• Virtual Machine

• Best-guess

2/1/12

Copyright 2012 Sony Network Entertainment

Unwind methods details

• Frame pointers

• Stack frame information maintained by runtime code, on
stack

• Requires runtime overhead in time and space

• Not often used (-fomit-frame-pointer compiler flag)

• Unwind tables

• Compact information about unwinding stored out-of-band

• Requires space overhead, but no runtime overhead

• Use –funwind-tables

• See https://wiki.linaro.org/KenWerner/Sandbox/libunwind

2/1/12

Copyright 2012 Sony Network Entertainment

Unwind methods details (cont.)

• Virtual machine

• Emulate processor to determine control flow

• Public domain McTernan ARM unwinder

• No per-process overhead

• May not be accurate

• Best-guess

• Match stack values with possible call sites

• No overhead

• Least reliable due to false positives

• Stack see-throughs – might be able to resolve on host

2/1/12

Copyright 2012 Sony Network Entertainment

Crash Handler

• New crash handler written by Sony (Tim)

• Based on debuggerd from Android

• Implemented as a core file handler

• Writes crash report to a “tombstone_0x” file
in /tmp/tombstones

• Writes information from /proc, ptrace, and kernel log
buffer

• Also writes some information to the kernel
log

2/1/12

Copyright 2012 Sony Network Entertainment

Crash Handler (cont.)

• Implements a compact flash journal

• <4k text summary of crashes since inception

• Can ‘install’ self (set core_pattern)

• Currently implements 2 unwinder methods

2/1/12

Copyright 2012 Sony Network Entertainment

Miscellaneous hard-won details

• Must read /proc before PTRACE_ATTACH

• Had to patch kernel to allow ptrace for process
in STOPPED state

• Still working on mainlinable code for this

• Kernel releases process memory before core-
handler exits

• Causes race between ptrace accesses and kernel

• Set core_pipe_limit to 1 to cause kernel to wait

• Must access memory with ptrace before reading memory
image on stdin

2/1/12

Copyright 2012 Sony Network Entertainment

Miscellaneous compiler flag notes

• -mno-sched-prolog

• Avoid merging function prolog with the rest of the
function body

• Should make prologs more uniform and detectable by
crash_handler

• -fomit-frame-pointer and –mapcs-frame

• Adjust stack frame layout and register usage

• -mpoke-function-name

• Add function name before each function in text segment

2/1/12

Copyright 2012 Sony Network Entertainment

Ideas for the future

• Crash-intelligent logging

2/1/12

Copyright 2012 Sony Network Entertainment

Crash-intelligent logging

• Tell program that has crashed to log more
information, in case of subsequent crash

• Adjust log level or verbosity

• Turn on tracer

• Turn off automatically after some period, for
end-user devices, to reduce overhead

2/1/12

Copyright 2012 Sony Network Entertainment

Some random issues

• Extra logging may make the bug go away

• Need a timeout, to avoid putting machine
into persistent high-overhead state

• Under normal circumstances, don't want every process to
be verbose

• That would use up logging space and crowd out other messages

• Application would need to voluntarily adjust
logging level

• Need user permission for extra overhead?

2/1/12

Copyright 2012 Sony Network Entertainment

To do:

• Find a spiffy name:

• tow_truck?

• grim_reaper?

• Resolve issue with required kernel patches

• Make a library routine for querying journal

• Polish up the code

2/1/12

Copyright 2012 Sony Network Entertainment

Download

• Source will be available on elinux wiki at:

• http://elinux.org/Crash_handler

• When: If not there by March 1, 2012, send
me an e-mail

2/1/12

Copyright 2012 Sony Network Entertainment

Questions?

<tim.bird (at) am.sony.com>

2/1/12

