
A solution to high latencies
caused by I/O

Paolo Valente, Assistant professor, Linaro

Content
• What’s the job of an I/O scheduler?
• High latencies caused by I/O, and the bfq solution

• Hikey (LeMaker) board: Android and Debian
• Google Pixel 2
• Pogoplug v4 and a laptop, with 4-8GB SD Cards
• Tests in progress with other boards

• Questions
• We don’t bump into these issues with our devices and services,

don’t we?
• Why does only BFQ work?

I/O scheduler
• Decides the order in which I/O requests

are to be served
• So as to guarantee:

• High I/O throughput
• Low latency

• High responsiveness - Low lag
• Fairness
• ...

• Component in the block layer (legacy blk, blk-mq)
• blk: noop, deadline, cfq, (bfq) blk-mq: none, mq-deadline, kyber, bfq

• Main classes of Linux-based OSes for embedded systems
• Android No in-tree bfq, no blk-mq support in mmc
• Linux distributions From 4.16: bfq, blk-mq support in mmc

• For Android
• HiKey (LeMaker) Board
• Google Pixel 2

• For Linux distributions
• HiKey (LeMaker) Board
• Pogoplug v4
• Dell Laptop with SD-Cards from 256MB to 8GB

The two worlds

Android
• HiKey (LeMaker) board, with out-of-tree bfq

• Demo showing problems and a solution
https://youtu.be/ANfqNiJVoVE

• Google Pixel 2
• Hard to find fast networks in Italy, for a real test with updates
• Resorted to testing with just file copies in the background

• Lighter, but intense I/O in common with updates
• High lag with file copy ⇒ high lag with app updates on a fast network

• Demo:
https://youtu.be/Ai3EPDpdsvY

https://youtu.be/ANfqNiJVoVE
https://youtu.be/Ai3EPDpdsvY

• Tests performed with the S benchmark suite:
https://github.com/Algodev-github/S

• Demo:
https://youtu.be/gyM_JJtIvP0

• Then more thorough results through graphs
• Start-up times for xterm, gnome-terminal and LibreOfficeWriter

• LibreOfficeWriter not shown: same results as with gnome-terminal
• I/O throughput

Linux distros: Hikey with Debian

https://github.com/Algodev-github/S
https://youtu.be/gyM_JJtIvP0

Hikey with Debian: start-up times

Hikey with Debian: throughput

• Tests run by Linus Walleij from Linaro
• With an 8GB Kingston SDHC Card

• Interesting case: bfq was not that good either
• Showing results only for xterm start up

• Other test cases are very little informative

Pogoplug v4 with Arch Linux

Pogoplug v4 with Arch Linux: start-up times

• Doubt
• Some other hardware resource influenced results

• To clear this doubt: test with the same SD-Card, but
• mounted this time on the SDHCI host controller of a Dell Laptop

Pogoplug v4 with Arch Linux: comments

• Tests run by Linus Walleij from Linaro
• Three SD-Cards tested, with equivalent results

• 256MB Lexar SD Card
• 8GB Kingston SDHC Card
• 4GB Toshiba SDHC Card

• Relative performance of all schedulers but bfq is much worse
than that with the HiKey

• Thus, for brevity, reporting
• Only xterm and gnome-terminal start-up times
• Only for the 8GB Kingston SDHC Card

Dell laptop with Fedora

Dell laptop with Fedora: start-up times

• We don’t bump into these latency issues with devices and
services, don’t we?
• And when we really don’t see these issues, why?

• Why does only bfq work?

Second part: two questions

• Given the terrible results shown, why are our devices perfectly
responsive in normal usage?
• At least most times

• Because storage is almost always underutilized
• We may run into troubles, if, in parallel,

• one or more large files are being read or written,
• a tree of source files is being compiled,
• a software update is in progress,
• indexing daemons are scanning/updating
• ...

A matter of probability: the bright side

• If your use case is beyond average, then the behavior of the
system usually changes dramatically
• It may become very frustrating and at times impossible to use
• No practical solution, apart from bfq, where available and known

• Users often just think this is normal and somewhat inevitable
• But it is not

• Some companies have turned these problems into an opportunity
• Proposing devices that guarantee an (allegedly ?) much better user

experience, with no or very rare lag issues

A matter of probability: the downside

• Hard to guarantee acceptable latency with a system that may
be subject to intense I/O

• Typical solution: overprovisioning
• Guarantee that the system is always underutilized
• Evident high cost in terms of resources, energy and money

• Or/plus some ad-hoc (non-public) scheduling/tuning
• Typically very rigid
• Fails if the workload changes w.r.t. to that for which the system has

been fine-tuned

Responsiveness of services

• Through a combination of three main techniques
• Accurate proportional-share of the throughput

• Shares proportional to weights (assigned to single processes or groups)
• Detection of I/O to privilege

• Raise the weight of the processes to privilege
• I/O-dispatch plugging (a.k.a. device idling)

• Do not dispatch other I/O while the process in service has momentarily no
pending I/O, if the process does sync I/O

• Prevents low-weight I/O from cutting in front of high-weight sync I/O inside the
storage device

• This may lower throughput. Challenge: plug for the minimum time needed

How does bfq make it?

