
Optimizing the Embedded Platform using OpenCV

February 17, 2012
Matt Weber
(mlweber1@rockwellcollins.com)

2

• Goals
• Project Approach & Results
• Future Ideas
• References

3

• To quantify the effects of the many optimizations
available and see what effect, if any power
management has

• Most Important Requirements (MIRs)
– Minimal startup and low latency processing time
– On-demand Power Management

• Background
– Utilized a OMAP3 processor for image processing
– Linux 2.6.39.4 Kernel with OMAP PM patches
– Buildroot w/ Crosstool-ng toolchain

Goals

4

• Cost/Benefit
– Compiler → Co-Processor → Power Management →

Specialized Cores
– Supporting software (which kernel, packages,

vendor libraries, etc)

• Define benchmarking tool

• Gather metrics for optimization methods applied to
– Platform (Kernel/rootfs)
– Application
– With power management active

Project Approach

5

• Gotchas
– Are Binary compatibility & architecture (armv5, v6, v7a....)

masking a problem?
– Are your Platform & App using the same toolchain?
– Are features like VFP (Vector Floating Point) & Advanced SIMD

extension (aka NEON) enabled?

• Building your own has some additional benefits
– Source control & ability to recreate/fix issues
– Geared towards your CPU arch & hardware FPU
– Could tailor kernel headers to get a newer feature
– Possibly incorporate the latest Linaro GCC

Project Approach: Compiler/Toolchain

Know your toolchain!

6

• OpenCv 2.1
– cvMatchTemplate() algorithm as the test case
cvMatchTemplate(img, tpl, res, CV_TM_CCORR_NORMED);

– Lots of matrix math
– Each of the time measurements were just for the

algorithm execution and not the image load time
– 5.5MB image is searched for the image of a small

boat

Project Approach: Benchmarking Tool

7

• Test: Compiler Optimization

• Description: Kernel and Rootfs are built with same flags below
and executing off an SDCard.

• Flags:
CFLAGS += -pipe -O3

• Result: ~19.35sec @800Mhz

Project Approach: Metrics Test #1

Compiler

8

• Test: Compiler Optimization & use of hardware co-processors

• Description: Kernel and Rootfs are built with same flags below
and executing off an SDCard.

• Flags:
CFLAGS += -pipe -O3 -mfpu=neon -ftree-vectorize -mfloat-abi=softfp

• Result: ~4.91sec @800Mhz
~75% increase in performance

Project Approach: Metrics Test #2

Compiler Co-Processor

0

5

10

15

20

25

O3
O3 w/Neon

9

• Test: Compiler Optimization & Power Management

• Description: Kernel and Rootfs are built with same flags below. Power
management is enabled to idle and frequency scale the CPU on-demand
between 300 and 800Mhz. It uses the default scaling trigger threshold for
the 2.6.39.4 kernel.
(Note: Purely ARM core instructions.)

• Flags:
 -pipe -O3

• Result: ~19.39sec @300-800Mhz
~40msec (2%) increase in processing time w/ PM

• Comment: Solely ARM instructions cause the scheduler to have more
demand for a higher clock speed earlier, so it results in a small increase in
the additional processing time required.

Project Approach: Metrics Test #3

Compiler Power
Management

19.33

19.34

19.35

19.36

19.37

19.38

19.39

19.4

O3
O3 w/PM

T
im

e
(S

e
co

n
d

s)

10

• Test: Compiler Optimization, co-processors and Power Management

• Description: Kernel and Rootfs are built with same flags below. Power
management is enabled to idle and frequency scale the CPU on-demand
between 300 and 800Mhz. It uses the default scaling trigger threshold for
the 2.6.39.4 kernel.
(Note: ARM core and Neon instructions.)

• Flags:
-pipe -O3 -mfpu=neon -ftree-vectorize -mfloat-abi=softfp

• Result: ~5.12sec @300-800Mhz
~210msec (4%) increase in processing time w/ PM

• Comment: Less time spent executing ARM instructions, since the Neon
core is offloading some of the processing, causes more execution at 300Mhz
and a slight increase in processing time.

Project Approach: Metrics Test #4

Compiler Power
Management

Co-Processor

4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

O3 w/Neon
O3 w/Neon &
PM

T
im

e
(S

e
co

n
d

s)

11

• Finish testing with DSP and TI Codec Engine
– Initial tests with CMEM, LPM, DSPLINK, TI Codec Engine are working
– Issues were found with the C6Accel used in SoC OpenCV DSP work

(newer TI libraries, kernel and compiler issues.....)

– TI measurements with Integra SOC (floating point DSP) show a 86%
speed up for the match template algorithm

Project Approach: Future Tests

Compiler Power
Management

Co-Processor Specialized
Cores

[1] [1]

12

Project Approach: Performance Metric Summary

The key to the next step is controlling offloading overhead

Test Result (sec)

#1 -O3 19.35

#2 -O3 & Neon 4.91

#3 -O3 w/ PM 19.39

#4 -O3 & Neon w/PM 5.12

#5 -O3 & Neon w/PM
& DSP

Est. ~3.07

13

Project Approach: Power Management Test

• Tools → bench power-supply and data logging multimeter
• Startup board (power-supply is set to a 1A limit at 5V)
• First test is on-demand

[root@buildroot ~]# echo "800000" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

[root@buildroot ~]# echo "ondemand" >/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

cpufreq-omap: transition: 800000 --> 300000

[root@buildroot ~]# ./opencv_templatematch

WORKING>>>

cpufreq-omap: transition: 300000 --> 800000

5.120000 seconds of processing

 t1: 320000 t2: 5600000

 Clockspersec: 1000000

cpufreq-omap: transition: 800000 --> 300000

[root@buildroot ~]#

• Second test is userspace set frequency
[root@buildroot ~]# echo "userspace" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

[root@buildroot ~]# echo "800000" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

cpufreq-omap: transition: 300000 --> 800000

[root@buildroot ~]# ./opencv_templatematch

WORKING>>>

4.910000 seconds of processing

 t1: 110000 t2: 5020000

 Clockspersec: 1000000

[root@buildroot ~]#

14

• Note: the DSP adds an additional ~375mW, shown in yellow & prevents the
ARM from scaling up to 800Mhz. The chart shows only an estimate of DSP
power draw[5] and an approximate timeline from TI whitepaper findings.

• If an OMAP GPU options was added, the approx power draw would increase
by ~93mW. We're not sure yet how much overhead this would cause on
the ARM...

Project Approach: Initial Power Measurements

1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

1.5

2

2.5

3
BeagleBoardXM - OpenCV Template Match Power Draw

ARM@800Mhz
ARM@300-800Mhz
Est. ARM@300-800Mhz & DSP

Time(Seconds)

P
o

w
e

r
(w

a
tts

)

Orig. Processing

15

• Investigate the new issues of Power Management in a multi-
core world
– How could load statistics be maintained for dynamic power control

across cores?
– Maybe add hooks into existing CPUFreq framework for on-demand

based on anticipated completion from other cores? What if Linux on
 the primary CPU(s) suspended while the offloaded task is being
processed?

Future Ideas

[7]

16

• GsoC project: OpenCV DSP Acceleration (2010)
– Investigate OpenCV code issues (lots of floating point and STL)
– Gather power, timing and latency/IPC overhead numbers using the

TI Codec Engine approach
– Possibly implement custom DSP approach based on results

• GPU
– Investigate (future) SGX Graphics SDK with OpenCL support
– Currently the only published vendor supporting OpenCL is ZiiLABS

(ZMS SOC) and TI (OMAP5)

Future Ideas

17

• Hardware
– BeagleboardXM
– (optional) LI-5M03 camera

• Repository & Wiki
– includes xloader, uboot, sdcard scripts, kernel & rootfs, test sequences
git://github.com/matthew-l-weber/buildroot.git
https://github.com/matthew-l-weber/buildroot/wiki

• Buildroot Overview
 http://free-electrons.com/pub/conferences/2011/elce/using-buildroot-real-

project.pdf

Project Information

18

[1]http://www.ti.com/lit/wp/spry175/spry175.pdf

[2]http://www.ti.com/lit/wp/spry144/spry144.pdf

[3]https://code.google.com/p/opencv-dsp-
acceleration/wiki/GettingStarted1

[4]http://old.nabble.com/Request-for-comments-on-packages-for-TI
%27s-OMAP3-and-DM365-processors-td29741226.html

[5]http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimatio
n_Spreadsheet

[6]http://www.sakoman.com/OMAP/an-overiew-of-omap3-power-
management-with-2639-pm.html

[7]http://www.ti.com/general/docs/wtbu/wtbugencontent.tsp?
templateId=6123&navigationId=11988&contentId=4638

Credits/References

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

