Android 5.X’s
Stream-Based Camera Architecture

Balwinder Kaur

Senior Member, Technical Staff
ON Semiconductor

Android Builder’s Summit | San Jose | 3.23.15

Tools of the Trade

/

—y

-

E S
_;p.
-
S
-
—
—-

Agenda

 The Basic Idea
« Enabling New Experiences
 CameraZ2 Architecture

« Camera2 APIs
— Ready. Set. Go!

* The Other Use Cases

* The Deuvil is in the Details
 Play Store Filters

« Demo

e Summary

-, VAN il
i /
.)

The Basic ldea

Limitations of original Camera Architecture

Limitations of android.hardware.Camera

3 Primary Operating New Features —hardto No Per-Frame Control
. Previevy, Capture & Video * Burst mode photography
Recording « Zero Shutter Lag, Multi-Shot

HDR, Panoramic Stitch

No Support for RAW Minimal Metadata Primitive Custom Settings
* Most products returned null » Support for face detection * Through
for the raw callback data Camera.Parameters class

but no guarantees when the
settings would go into effect

http://source.android.com/devices/camera/camera.html

Enabling New Experiences

Camera2 Architecture Enables -

Point and Click Camera
Professional Camera

Professional Camera + Post
Processing on-device

Innovative Mobile Camera ++

Features and Requirements

Point and Click

*Preview
o Still
eVideo Recording

Computational Photography

e|ndividual Frame Control
eAlgorithms & Compute
Power

*HDR, Focus Stacking,
Exposure Bracketing

Professional Camera

*Fine Grained Control of
Lens, Sensor, Flash
*RAW Sensor Output
with capture metadata

Innovative Mobile Cameras

eSensors

el ocation
eConnectivity/Cloud Power
eCompute Power

android.hardware.camera2

Enables Professional Quality Photography
— Think DSLR instead of Point-and-Shoot

Enables Access to RAW Images

Enables On-device processing of Camera Data
— High Dynamic Range, Focus Stacking

Enables New Use Cases combining Imaging with
— Rich Sensor input

* Inertial sensors, altitude et. al.
— Compute Power

* Multi-core CPU & GPU
— Connectivity

* Power of the Cloud & Access to Proximity (BLE, NFC)
— Context

* Location & User History

Aydes3oloyd |euoneindwo)

Professional Quality Photography

 Fine grained control of the

— Sensor Professional Camera
— Flash

— Lens
— Image Signal Processing Pipeline

» Control on a per-frame basis, and deterministic behavior
* Processing Images at full resolution and full frame rate(30 fps)

 Meta data

— Every frame is returned with the actual settings that it was taken with, and
requested for.

Computational Photography

Professional Camera +
L Post Processing on-device
Definition

- Computational photography refers to computational image capture,

processing, and manipulation techniques that enhance or extend the

capabilities of digital photography.

Source: Wikipedia

Multi Shot HDR

Computational

- HDR = High Dynamic Range Photography

» Multiple shots at different exposures and then blended together

Panoramic Stitching

Computational
Photography

Multiple Images with orientation information and fixed Exposure

Source: commons.wikimedia.org

Flash No-Flash Photography

Computational
Photography

Orig. (top) Detail Transfer (bottom) Flash No-Flash Detail Transfer with Denoising

Figure 6: An old European lamp made of hay. The flash image captures detail, but is gray and flat. The no-flash image captures the warm illumination of the
lamp, but is noisy and lacks the fine detail of the hay. With detail transfer and denoising we maintain the warm appearance, as well as the sharp detail.

Source: Microsoft Research

Flash No-Flash Photography

Computational

Photography

 Take 2 shots of the scene— one
with flash on, the other with

flash off
« Computationally blend the 2

frames together

No-Flash “las Red-Eye Corrected

Source: Microsoft Research

Focus Stacking

Computational

Photography

Focus Stacking for macro photography.
Also known as — all-in-focus photography

Source: Wikipedia
16

View Finder

Computational
Photography

« Today’s smartphones
enable features like

— Touch to Expose & Touch to
Focus

« Computational
Photography can take it to
the next level

— Edit the frame in the view
finder by selecting areas to
sharpen, blur, brighten and
maintain these during capture
mode

Source: SIGGRAPH 2012

Mobile Embedded Vision Applications

Gesture Recognition

Face Recognition, Object Tracking Natural User Interface
Companies are using the Front

Facing Camera to provide

Visual Search
3D Mapping of the environment gesture recognition solutions.
Augmented Reality

iInnovative Mobile Camera ++

On-Device
Compute Sensors
Power

i \ l
. Location
Computing

Fine Grained
Control

Lens, Sensor, Flash

User History
User Preferences

Camera2 Architecture

Limitations of android.hardware.Camera

3 Primary Operating Modes

New Features — hard to implement

No Per-Frame Control

No Support for RAW

Minimal Metadata

Custom Settings

Frame Metadata Queue | Image Buffers

=

http://source.android.com/devices/camera/camera.html

Camera2 Core Camera2 API Core Operation Model
p
operation MOdeI 1 Request =>1 image captured =

1 Result metadata + N image buffers

* Per Frame Settings " CaptureRequest |

queue

Target Surface

CameraDevice
» The Settings travel with individual ._> capture()
requests and are no longer e
globally applied o

. Image buffer delivered to all
configured and requested | | |

Configured output

Surfaces _ Sufaces

« Metadata returned back to the e
application as requested —
separately
* Multiple requests and results in Sutecs o |
queue simultaneously | | g
CaptureResult s
Settings used
by hardware
status onCaptureComplete()
http://source.android.com/devices/camera/camera.html Original [Camera hardware
CaptureRequest

Camera3 HAL Model

Camera-using app Camera2 API
; Do .
CameraManager. device CameraManager
CameralListener
CamersRropertios getDeviceldList()
etCameral rties| Camera Device Hardware
. Vaidseting | [T 90 Properties)
| Outputstream | ranges openCamera()
destinations ! [— Pending request queue (Fpmm—]
! v In-progress
SurfaceTexture | Hardware Sl queue 9 p| Queue Lens
! CameraDevice
i ~& createCaptureRequest() M
- @ capture() / copy when queue is empty
captureBurst() Request
~ & setStreamingRequest() / __ | set = Repeating request list s
setStreamingBurst()
m m Pos'
@ stopRepeating() clear Processing
] i Request
! List<Surface> —ND configureOutputs() —q Control
,,,,,,,,,,,,,, 1 Algorithms

Output stream queue N

m
buffer

CaptureResult
Final settings
used

A

Completed capture queue

http://source.android.com/devices/camera/camera.html

Original

The Camera APIls

Android Lollipop

Camera related classes and interfaces from android.hardware deprecated
2 new packages

android.hardware.camera2

android.hardware.camera2.params

25+ classes, 1 Exception

Camera Model

From the Javadoc

“This package models a camera device as a pipeline, which takes in
input requests for capturing a single frame, captures the single image
per the request, and then outputs one capture result metadata packet,
plus a set of output image buffers for the request. The requests are
processed in-order, and multiple requests can be in flight at once. Since
the camera device is a pipeline with multiple stages, having multiple
requests in flight is required to maintain full frame-rate on most Android
devices.”

Architecture walk through for primary use cases

27

Ready.

Figure out what's available

Concepts and Terms from Camera 2

 Camera Device < Capture Request

« Streams « Capture Result
 Capture Session — mage Data
— Metadata

« Target Surfaces _ Total Capture Result

1. How many Cameras do | have?

Query the System for capabilities

CameraManager provides information on the number of available
cameras, or CameraDevices.

CameraManager manager =
(CameraManager) getSystemService (Context.CAMERA SERVICE) ;

String[] camids = manager.getCameraldList (),

2. What kind of a CameraDevice is it?

CameraCharacteristics provide static metadata for a given
CameraDevice. This information is immutable for a given camera.

CameraCharacteristics characteristics =

manager .getCameraCharacteristics (camid) ;

CameraCharacteristics Keys =
INFO_SUPPORTED_HARDWARE_LEVEL Additionally, RAW may be supported

3 Classes of Cameras are supported @ FULL + RAW
@ LIMITED + RAW

LEGACY LIMITED FULL

3. How many maximum streams does the system
support?

3 Classes of Streams The Maximum Number of Streams =
@) Processed & Stalling + REQUEST_MAX_NUM_OUTPUT_PROC_STALLING'

_ + REQUEST_MAX_NUM_OUTPUT_RAW!
3 RAW (Bayer Domain)

PROCESSED & PROCESSED &
NON_STALLING | STALLING
(like YUV) (like JPEG)

FULL >=3 >=1 >S=
LIMITED >=2 >=1 >=0
LEGACY >=2 >=1 0

1 CameraCharacteristics.Key

Guaranteed Stream Configurations - LEGACY

Gy,
i 1 o \ 6/29/)
Type Max Size Type Max Size Type Max Size ?‘e@d
PRIV? Maximum?
JPEG Maximum
YUV Maximum
PRIV Preview JPEG Maximum
YUV Preview IPFG Maximiim
PRIV previc 21l capture plus in-app processing
PRIV ——"Preview YUV Preview e =
rPRIV Preview YUV Preview JPEG Maximum

1 Device Upague rurmas, sea Vicikilit - ints Toiiat rur Application

2 Device Maximum Sensor Outﬁut

Guaranteed Stream Configurations - LIMITED

YUV Preview YUV Record

PRIV Preview YUV Record JPEG Record

1 Maximum resolution supported by the device for media recording

34

Guaranteed Stream Configurations - FULL

PRIV Preview PRIV Maximum

YUV Preview YUV Maximum

6401480 | PRIV

Guaranteed Stream Configurations - RAW

Target 1 Target 2 Target 3

RAW Maximum \

YUV Preview RAW Maximum

PRIV Preview YUV Preview RAW Maximum

- In-app processing with simultaneous JPEG and DNG. -

[I [
PRIV ﬁ n i ‘ IPEG ‘ W N

4. How can these streams be configured?

CameraCharacteristics characteristics =
cameraManager.getCameraCharacteristics (camerald)

StreamConfigurationMap configs = characteristics.get (
CameraCharacteristics.SCALER STREAM CONFIGURATION MAP) ;

StreamConfigurationMap provides information on

» Supported Stalling and Non-Stalling Image Formats

« Supported Image Sizes for Supported Image Formats

» Supported Video Sizes and fps(frames per Second) Speeds

* Minimum Frame Duration and Stall Duration for supported formats and sizes
« Determine whether a given Surface is supported by this CameraDevice or not

FULL Camera Devices

30 FPS at Per Frame Control

sensor max resolution android.sync.maxLatency

. . PER_FRAME_CONTROL
more than 20fps is required

Minimum 3 Processed
Non-Stalling Output
NICEINS

Arbitrary Cropping
Region

android.scaler.croppingType ==

FREEFORM (think YUV)

Manual Sensor Control

Manual Post Processing
Control

android.request.availableCapabilities

Stream Configurations
Available

as a Configuration Map

LIMITED and LEGACY Camera Device

LEGACY LIMITED

* NO Per- Frame Control e Query for individual capabilities!
¢ NO Manual Sensor Control

e NO Manual Post Processing
* NO Arbitrary Cropping Regions

e No Stringent Performance Constraints That’s
a lot of
checks!

* Not a candidate for a Superior Camera Experience

@ FULL + RAW

LEGACY LIMITED FULL @ LIMITED + RAW

Set.

Open the Camera

1. Open a Full Camera Device

(1 Use the instance of the CameraManager to open a Camera passing
in its camera id.

(2 Get a handle to a CameraDevice via the
CameraDevice.StateCallback method when it is successfully
opened.

CameraDevice.StateCallback mStateCallback =
CameraDevice.StateCallback () {

-

manager .openCamera (camid, mStateCallback, ..);

2. Create a Capture Session

Minimize calls to

* Expensive Operation createCaptureSession

— Involves allocation of buffers beneath the HAL
—May take up to several hundred milliseconds
*All modes cannot be supported concurrently
—s0 Sessions may have to be torn down and setup again.

CameraCaptureSession.StateCallback mCaptureCallback=
new CameraCaptureSession.StateCallback () {...};

List<Surface> outputs = new ArraylList<Surface>(...);
createCaptureSession (outputs, mCaptureCallback, ...);

// a handle to a capture session in mCaptureCallback
method

Failure to create a capture session may result in exceptions being thrown

Different Target Output Streams

Preview Still Capture
ImageReader
SurfaceView | | TextureView Ima(ggFéeGa)der (RAW%SENSOR) — DNGCreator

: - In-App Processing
Video Recording Camoa Data
MediaRecorder MediaCodec Aliocation ImageReader SurfaceTexture | | GLSurfaceView
(Type YUV) ||(YUV_420_888)

3. Create a Capture Request

(M Pick the Capture Request Template
o TEMPLATE_PREVIEW
o TEMPLATE_STILL CAPTURE
o TEMPLATE_VIDEO SNAPSHOT
o TEMPLATE_RECORD
o TEMPLATE_MANUAL

CaptureRequest.Builder mPreviewBuilder = mCameraDevice
.createCaptureRequest (CameraDevice.TEMPLATE PREVIEW) ;

3. Create a Capture Request - contd.

@ Pick an appropriate target output

o e.g. TextureView for the correct width/height for Preview

mPreviewBuilder.addTarget (mPreviewSurface); //where
mPreviewSurface 1s a Surface initialized to the width and

height of the Preview Desired

@ Pick the Frequency of the Capture Request
o capture

captureBurst

setRepeatingRequest

setRepeatingBurst

stopRepeating

abortCaptures()

O O O O O

Ready. Set. Go!

Get your pictures

Receiving Image and Metadata

mSession.setRepeatingRequest (mPreviewBuilder.build(),

listener,backgroundHandler) ;

* The Image data is typically received in a listener associated with the
Output Surface.

* The Metadata is received in the onCaptureCompleted callback
method of CameraCaptureSession.CaptureCallback via the

TotalCaptureResult object. T fhe The Sl

CaptureResult.SENSOR_TIMESTAMP
& image.getTimestamp()

How does the
metadata tie to
- the correct image
— data frame?

v_/

/

N’

/ o

The Other Use Cases

Still Capture - JPEG

(1 Use TEMPLATE_STILL CAPTURE for the CaptureRequest

(2) Create an ImageReader object with format ==
ImageFormat.JPEG

3 Pick CameraCaptureSession.capture for the frequency of
capture

@ Image Data is received in the
ImageReader.onlmageAvailableListener

(5) Metadata is received in the
CameraCaptureSession.CaptureCallback.
onCaptureCompleted callback

Still Capture - RAW

(1 Use TEMPLATE_STILL_CAPTURE for the CaptureRequest

@ Create an ImageReader object with format == ImageFormat.
ImageFormat.RAW_SENSOR

@ Pick CameraCaptureSession.capture for the frequency of capture
@ Image Data is received in the ImageReader.onlmageAvailableListener

(5 Metadata is received in the
CameraCaptureSession.CaptureCallback.onCaptureCompleted callback

® Use an instance of DngCreator to convert RAW to DNG (Digital Negative)

final File dngFile = new File(path, filename);
outs = new FileOutputStream (dngFile) ;
if (mRawTotalResult != null) {

DngCreator d = new DngCreator (characteristics, mRawTotalResult);
d.writelmage(outs, image);

Still Capture - BURST

1 Use TEMPLATE_STILL_CAPTURE for the CaptureRequest

@ Create an ImageReader object with format == ImageFormat.
ImageFormat.JPEG

@ Pick CameraCaptureSession.captureBurst for the frequency of capture
@ Image Data is received in the ImageReader.onlmageAvailableListener

(5 Metadata is received in the CameraCaptureSession.CaptureCallback.
onCaptureCompleted callback

Video Recording

(1 Use TEMPLATE_RECORD for the CaptureRequest

(@ Create a MediaRecorder Object and use its surface
as the output stream

3 Pick CameraCaptureSession.setRepeatingRequest
for the frequency of capture

@ Image Data is recorded in the Image file set via
MediaRecorder.setOutputFile call.

(5) Metadata is received in the
CameraCaptureSession.CaptureCallback.
onCaptureCompleted callback

In-App Processing of Camera Data

(1 Use an appropriate Template for the CaptureRequest; including
TEMPLATE_MANUAL if the use case so demands

@ Create an object like Allocation Renderscript, ImageReader (with
Format YUV _420 888), SurfaceTexture, or GLSurfaceView that
provides a Surface

@ Pick an appropriate frequency for capture

@ Image Data can be found in an appropriate callback for the surface
chosen

(5 Metadata is received in the CameraCaptureSession.CaptureCallback.
onCaptureCompleted callback

Some use cases for In-App Processing

« Use Cases
— Filters
— Computational Photography Use cases
— Custom Post Processing of the Imaging Pipeline
— Computer Vision Applications
« Uses
— Compute Framework
* Renderscript, OpenCL
— Low level Graphics APIs
* OpenGL ES

And then there was Metadata...

Controls
CaptureRequest Static Metadata

Fixed for a given CameraDevice

CameraMetadata CameraCharacteristics

Information
Dynamic Metadata

Settings associated with each
frame

CaptureResult

Key Value Pairs for Hardware Control (Lens, Sensor, Flash), Image
Processing Pipeline, Control Algorithms and Output Buffers

Fine Grained Control

a.k.a “The Devil is in the Details”

Manual Sensor Control

Flash Lens Black Level
(if present) (if adjustable) Lock

Sensor

Manual 3A Control

« A Camera Request can override the 3A Algorithm Controls
— Auto Exposure (AE)
— Auto Focus(AF)
— Auto White Balance (AWB)

« There is an overall control for all Auto Algorithms
android.control.mode

— When set to OFF, application has full control of the pipeline

— When set to AUTO, the individual controls are in effect

Application Controlled (Auto) Algorithms

android.control.mode= AUTO
android.control.a*mode = OFF

Auto Focus
e Application uses android.lens.focusDistance to control the Lens
Auto Exposure

e Application uses android.sensor.exposureTime, android.sensor.sensitivity
and android.sensor.frameDuration + android.flash.* to control exposure

Auto White Balance

e Application uses android.colorCorrection.transform &
android.colorCorrection.gains to control the white balance

Manual Post Processing

RAW Bayer Input > Statistics ’_, 3A Algorithms e A »
Image Processing

|

o

Shading > Geometric
Correction Correction

Demosaic 3 |
4 l v | Noise Reduction Color Correction

Image Processing

i i

|
|
Color Correction 3

¥

Camera

Scale and Crop

Tone Curve

Scale and Crop Scale and Crop Demosaic Adjustment

RAW Bayer

Output YUV Output 1 YUV Output 2 YUV Output 3 JPEG Output

Hot Pixel

Output

Metadata Image Streams [

http://source.android.com/devices/camera/camera.html

Image Processing Pipeline

Hot Pixel Black Level

. Demosaic
\Yi[eYe[= Correction

Color

Shading Mode Tone Curve

Correction

Mode Adjustment

(lens shading)

Noise
Reduction
Mode

Edge
Enhancement

Manual Post Processing

Manual Tonemap control

e android.tonemap.*

Manual White Balance control

e android.colorCorrection.*

Manual Lens Shading map control

e android.shading.*

Manual aberration correction control (if supported)

¢ android.colorCorrection.aberration.*

The other camera2 package
android.hardware.camera2.params

» BlackLevelPattern

* ColorSpaceTransform

- Face

* LensShadingMap

* MeteringRectangle

* RggbChannelVector

« StreamConfigurationMap
* TonemapCurve

Play Store Feature Filters
Android Manifest <uses-feature>

Play Store Feature Filters

android.hardware.camera.hardware_level.full
android.hardware.camera.capability.raw
android.hardware.camera.capability.manual_sensor
android.hardware.camera.capability.manual_post_processing

See Also: Versioning

Play Store

Demo Time

Summary

its all about you and your power tools!

On-Device
Compute Sensors
Power

Cloud ’ _
Location

Computing

Fine Grained

Control 4 User History

User Preferences
Lens, Sensor, Flash

Q&A

and THANK YOU for your time.

Balwinder Kaur
balwinder.kaur@onsemi.com
balwinder.x.kaur@agmail.com

http://www.slideshare.net/Ibk003 https://github.com/Ibk003

