
Build Community Android
Distribution

and
Ensure the Quality

Jim Huang (黃敬群) <jserv@0xlab.org>

Developer & Co-Founder, 0xlab
http://0xlab.org/

Oct 28, 2011 / ELC Europe (Prague)

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2011 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and
translations are welcome!

Latest update: Oct 28, 2011

http://creativecommons.org/licenses/by-sa/3.0/legalcode

0x1ab = 162+16x10+11 = 427
(founded on April 27, 2009)

0xlab is another Hexspeak.

About Me (1) Come from Taiwan
(2) Contributior of Android
Open Source Project (AOSP)
(3) Developer, Linaro
(4) Contributed to GNU
Classpath / Kaffe, Linux
internationalization (i18n),
Openmoko

ARM / Linaro
Contribute to Linaro Android since the first line of code

AzureWave
Build wireless networking & image processing solutions

Mediatek
Android based consumer products

Open Embedded Software Foundation
Contribute to the reference implementation

Commercial Partners of 0xlab

http://0xlab.org/partners.html

Eventually, partners can benefit from open
source efforts and our experience.

Agenda (1) Build Android distribution
(2) Lesson learned from AOSP
(3) Ensure the Quality
(4) Bring enhancements back to
Community

Build Android Distribution
based on non typical open source projects

The reason why we built community
Android Distribution:

Initially, we just wanted to enable wireless
connectivity features on Android for our hardware

partnters.

But, we never thought that it was difficult to do
things efficiently.

Beagleboard DevKit8000

0xdroid: enhanced Android distribution

We suffered from performance and usability issues in AOSP. 0xdroid
is basically the environment where we can develop and experiment.

What does 0xdroid deliver?

• Hardware enablement: Beagleboard (TI OMAP3),
Pandaboard (TI OMAP4), Snowball (ST-Ericsson
Ux500; on-going)

• Provide full source code for HAL
• Usability: software cursor, window manager fix,

large screen tweaks, network connectivity fix
• Performance: ARM specific optimizations,

graphics enhancement
• Features: Bluetooth HID (keyboard/mouse),

external modem, 3D effects, customized
Launcher

But, 0xlab is not really making yet
another Android distribution. We

wish to help community.

0xdroid is just a testbed (or reference implementation),
and the valuable changes should be merged in

upstream or other community projects.

Strategy and Policy

• open source efforts to improve AOSP
• We focus on small-but-important area of Android.

– toolchain, libc, dynamic linker, skia, software
GL, system libraries, HAL, UX

• Develop system utilities for Android
– benchmark, black-box testing tool,

validation infrastructure

• Feature driven development
– Faster boot/startup time, Bluetooth profile,

visual enhancements

• Submit and share changes to...
– AOSP, CyanogenMod, Android-x86, and

Linaro

Working Model by 0xlab
CyanogenMod Android-x86Rowboat

Lesson Learned from AOSP

Let's go Upstream!
Unfortunately, contributing to AOSP

is an __art__.

You never know how Google thinks of your
patches exactly, even through Gerrit (code review system).

Problems We faced

• AOSP looks like “An Open Source Pretender"
• No public roadmap

– Therefore, we ignore the modifications
against Android framework.

• The merged changes usually show up in next 1 or
2 public release.
– It is really hard to introduce/track the

relevant changes.

• Not clear discussions on android-contrib mailing-
list. Sometimes, you have to have private
communications to Google engineers.

• Version control / Code Review on invisible
repositories (internal and far-away GIT tree)

Change 123

Patchset 1

Patchset 2

Commit 41dbe5

Commit cdeb34

Change represented in Gerrit
gerrit upstream

dev-adev-b

Create
Local

Branch
% git checkout -b topic-branch

work

Push
to

Gerrit

% git push gerrit \
 HEAD:refs/for/master

Google provides the great code
review tool for AOSP, but...

Create
Local

Branch

work

Push to
Gerrit

Review

Fix
commit

Upstream repo

rejected

approved/
submitted

rebased!

Here “upstream” means AOSP master and Google internal tree.

Flow of AOSP submitted changes

Gap between Goolge internal
GIT/Perforce

and AOSP Git

Android style open source modelAndroid style open source model

No explicit change historyNo explicit change history

After Gingerbread, it gets much clear for
toolchain part

prebuilt/
commit 81cce608ab19dcd0aaf7d08d57a4460229e43c45
Author: Jing Yu <jingyu@google.com>
Date: Tue Dec 14 10:55:23 2010 ­0800

 Patched toolchain to fix a few gcc and binutils bugs.

 Sources to build this toolchain are listed on arm­eabi­4.4.3/SOURCES

prebuilt/
commit 81cce608ab19dcd0aaf7d08d57a4460229e43c45
Author: Jing Yu <jingyu@google.com>
Date: Tue Dec 14 10:55:23 2010 ­0800

 Patched toolchain to fix a few gcc and binutils bugs.

 Sources to build this toolchain are listed on arm­eabi­4.4.3/SOURCES

linux­x86/toolchain/arm­eabi­4.4.3/SOURCES

build/ synced to
 commit 4cc02faaa7e8828f9458b1828a6f85e7791ae2aa
 Author: Jim Huang <jserv@0xlab.org>
 Date: Fri Aug 20 23:30:37 2010 +0800

 And rollback the following 3 patches.
 commit de263c26a7680529baca731c003bc58b68d72511
 Author: Jing Yu <jingyu@google.com>
 Date: Thu Aug 12 15:52:15 2010 ­0700

linux­x86/toolchain/arm­eabi­4.4.3/SOURCES

build/ synced to
 commit 4cc02faaa7e8828f9458b1828a6f85e7791ae2aa
 Author: Jim Huang <jserv@0xlab.org>
 Date: Fri Aug 20 23:30:37 2010 +0800

 And rollback the following 3 patches.
 commit de263c26a7680529baca731c003bc58b68d72511
 Author: Jing Yu <jingyu@google.com>
 Date: Thu Aug 12 15:52:15 2010 ­0700

Although we can check git log, we
still have no idea why they changed
Although we can check git log, we
still have no idea why they changed

• “master” branch in Android
is the bridge between AOSP and Google internal
tree. There are many contributions merged from
companies, organizations, and individuals. But no
efficient code review available for non-existing
repositories. And, only few Google engineers do
review changes.
• Master branch = the latest AOSP + Partial changes

by Google (bug-fixes from internal tree)
–Not fully verified codebase.

• The best hints are the opinions written by Google
engineers inside Gerrit.
–Send patches if possible

Observed AOSP Working Model

My interpretation of
Android:

Hardware is Revolution;
Sotware is basically

Evolution;
Android is Hardware-driven

Software Revolution

System Library System Library

Android FrameworkAndroid Framework

ApplicationsApplications

Gallery Phone Web Browser Google Maps

Activity
Manager

Window
Manager

Content
Manager View System Notification

Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

SurfaceFlingerSurfaceFlinger OpenCOREOpenCORE SQLite

OpenGL|ESOpenGL|ES

Freetype

WebKit

SGLSGL OpenSSL bionic libcbionic libc

Linux KernelLinux Kernel

・・・・・

Android RuntimeAndroid Runtime

Class Library

Dalvik Virtual MachineDalvik Virtual Machine
AudioFlingerAudioFlinger

Functional View (Android 1.5)

System Library System Library

Android FrameworkAndroid Framework

ApplicationsApplications

Gallery Phone Web Browser Google Maps

Activity
Manager

Window
Manager

Content
Manager View System Notification

Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

SurfaceFlingerSurfaceFlinger SQLite

OpenGL|ESOpenGL|ES

Freetype

WebKit

SkiaSkia OpenSSL bionic libcbionic libc

Linux KernelLinux Kernel

・・・・・

Android RuntimeAndroid Runtime

Class Library

Dalvik Virtual MachineDalvik Virtual Machine
AudioFlingerAudioFlinger

RenderScriptRenderScript

SMP fixes

SMP improvements

JIT compiler

OpenGL|ES 2.x accelerated.
Drop 2D accel

V8 bridge

Skia supports GPU backend
In Android ICS

StageFright

GLES 2.0

The overall design is consistant, but the current model
prevents from diverse community contributions.
The overall design is consistant, but the current model
prevents from diverse community contributions.

Functional View (Android 2.3)

4204 google.com

1354 android.com

98 sonyericsson.com

71 gmail.com

39 codeaurora.org

39 samsung.com

38 intel.com

32 nokia.com

32 holtmann.org

29 0xlab.org

25 trusted-logic.com

17 openbossa.org

11 nxp.com

11 linux.org.tw

10 ti.com

10 acer.com.tw

8 themaw.net

8 garmin.com

7 snpe.rs

7 motorola.com

7 mc.pp.se

7 googlemail.com

AOSP statistics for Gingerbread (Dec 2010)

The number are commits since Froyo release.
However, the valuable changes from community such as
CyanogenMod are usually absent due to long-time review process.

Ensure the Quality
when building custom Android distribution and

merging changes from community

Mission in our development:
Improve UX in SoC

UX = User Experience

SoC = Integrated Computing Anywhere

Quality in custom Android Distribution

• 0xlab delivers the advantages of open source
software and development.
– Quality relies on two factors: continuous

development + strong user feedback

• Several utilities are developed to ensure the
quality and released as open source software.
– 0xbench (Android benchmarking tool)

– ASTER (Android System Testing Environment and Runtime)

– LAVA (Linaro Automated Validation Architecture)

• In the meanwhile, performance is improved by
several patches against essential components.

Android benchmark running on LAVA.
Automated Validation flow includes
from deploy, then reboot, testing,
benchmark running, and result submit.

Android support on LAVA
 https://wiki.linaro.org/Platform/Validation/LAVA

Android related commands in LAVA:
 * deploy_linaro_android_image
 * boot_linaro_android_image
 * test_android_basic
 * test_android_monkey
 * test_android_0xbench
 * submit_results_on_host

LAVA: Automated Validation Infrastructure for Android

• A set of system utilities for
Android to perform
comprehensive system
benchmarking
• Dalvik VM performance
• OpenGL|ES performance
• Android Graphics framework

performance
• I/O performance
• JavaScript engine performance
• Connectivity performance
• Micro-benchmark: stanard C library,

system call, latency, Java
invocation, ...

0xbench: comprehensive open source benchmark
suite for Android

: 0xBench

Collect and Analyze results on
server-side

Android Functional Testing
(1) stress test
(2) Automated test

Stress Test

• According to CDD (Compatilbility Definition
Document), Device implementations MUST include
the Monkey framework, and make it available for
applications to use.

• monkey is a command that can directly talks to
Android framework and emulate random user input.
adb shell monkey ­p your.package.name ­v 500

• Decide the percentage of touch events, keybord
events, etc., then run automatically.

ASTER: Automated Test

• Blackbox-test vs. Whitebox-test
• An easy to use automated testing tool.

Bring Enhancements back to
Community

What do we deliver to communty?

• Patches merged in AOSP, CyanogenMod, and
Android-x86

• Implement 100% open source OpenGL|ES
adaptation based on Mesa/3D into Android
– The world-first, important to Android-x86

• Performance: ARM specific optimizations,
graphics enhancement

• Features: Bluetooth HID (keyboard/mouse),
external modem, 3D effects, customized
Launcher

Arithmetic on Nexus S Tune Dalvik VM performance (armv7)

2D on Nexus S
Apply extra performance tweaks against optimized build
(NEON)

Benchmark: 2D (arm11-custom)

Benchmark: 3D (arm11-custom; no GPU)

This explains that we have several system tools and development flow
to help customers/community to verify the performance and improve.

• Android C/C++ library
• 0xlab’s Optimizations (merged in Android

upstream)
– Memory operations: Use ARMv6 unaligned access to

optimize usual cases

– Endian/Data Type conversion: Use ARMv6 fast endian
primitives. Useful for TCP/IP (big endian / little endian
converting)

– Various ARM optimized string operations

• memcpy, strcmp, strcpy, memset

Bionic libc

Dynamic Linker Optimizations

Why and How?

• The major reason to optimize dynamic linker is to
speed up application startup time.

• Approaches:
● Implement GNU style hash support for

bionic linker
● Prelinker improvements: incremental

global prelinking
– reduce the number of ELF symbol lookup

aggressively

• Changed parts
– apriori, soslim, linker, elfcopy, elfutils

bo
ot

an
im

at
io

n

m
ed

ia
se

rv
er

ap
p_

pr
oc

es
s

ke
ys

to
re

db
us

-d
ae

m
on

de
bu

gg
er

d

se
rv

ic
em

an
ag

er ri
ld

in
st

al
ld

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lp
gp
re.gp
re.pe.gp
re.pe.pgp.gp
re.pe.pgp.gp.are

(normalized) Dynamic Link time

 bo
ot

an
im

at
io

n

m
ed

ia
se

rv
er

ap
p_

pr
oc

es
s

ke
ys

to
re

db
us

-d
ae

m
on

de
bu

gg
er

d

se
rv

ic
em

an
ag

er ri
ld

in
st

al
ld

-0.2

0

0.2

0.4

0.6

0.8

1

elf.lp
elf.gp
elf.re.gp
elf.re.pe.gp
elf.re.pe.pgp.gp
elf.re.pe.pgp.gp.are

(normalized) Symbol Lookup number

libc.so
printf

libfoo.so
foo
bar

void foo (){
 printf(“fooooo”);
 bar();
}

DT_GNU_HASH
foo
bar

DT_HASH
foo
bar
printf

libfoo.so

DT_GNU_HASH: visible dynamic linking improvement =
 Better hash function (few collisions)
 + Drop unnecessary entry from hash
 + Bloom filter

Symbols
in ELF

lookup# fail# gnu hash filtered by bloom

gnu.gp 3758 23702 19950 23310 18234(78%)

gnu.gp.re 3758 20544 16792 19604 14752(75%)

gnu.lp 61750 460996 399252 450074 345032(76%)

gnu.lp.re 61750 481626 419882 448492 342378(76%)

Bit array

H = {x, y, z} = hash functions

Hash function may collision
 → Bloom filter may got false positives

Bluetooth HID (Keyboard/Mouse)

UI customizations
• Provide several UI/Launcher combination for

small and large screen devices.
• Sizing from HVGA, VGA, SVGA (Phone), to 720p/1080p (TV)

• Either modified Android Launcher or new
replacement

• Licensed under Apache Software License

Some UI Changes
• Hardware enablement: Beagleboard (TI OMAP3),
• BottomBar

Source code: http://gitorious.org/0xdroid/packages_apps_launcher

• PositionBar
Visible Hint

• ThemeSelector
http://code.google.com/p/0xdroid/wiki/LauncherTheme

http://gitorious.org/0xdroid/packages_apps_launcher

• 3D effects and the ARM optimizations are enabled in
Qualcomm platforms: MSM7x27 (with GPU) and MSM7x25
(software only)

Products with Advanced 3D UI

Android Boot Time Optimizations

Qi Boot-loader

 Only one stage boot-
loader

 Small footprint ~30K
 Currently support

− iMX31

− Samsung 24xx

− Beagleboard
 KISS concept

− Boot device and load
kernel

Qi
Boot-oader

U-Boot + XLoader

Size ~30K ~270K+20K

Time to Kernel < 1 s > 5s

Usage Product Engineering

Code Simple Complicated

Boot loader

Based on existing technologies thus requires little
modification to userspace

– TuxOnIce
Release clean-pages before suspend

Swap out dirty-pages before save image

Image size reduced leads to faster resume time.

Optimized ARM Hibernation

Save the heap image (like core dump) of Zygote after
preloading classes

Modify Dalvik to make hibernation image after system
init and before Launcher startup

Parallize Android init

Cache & Share JITed code fragment

Further Boot Time Optimization

0xdroid Roadmap:
http://code.google.com/p/0xdroid/wiki/Roadmap

Source repository: http://gitorious.org/+0xlab

Wiki: http://code.google.com/p/0xdroid/w/list

Demo videos: http://www.youtube.com/0xlab

Mailing-list:

General discussion:
http://groups.google.com/group/0xlab-discuss

Technical / Development:
http://groups.google.com/group/0xlab-devel

IRC channel (FreeNode): #0xlab

聯繫 0xlab/0xdroid 開發團隊
Resources

http://groups.google.com/group/0xlab-discuss

Special thanks to
AzureWave, who sponsors me for
a long time.

Any Questions?

Thanks for Attending

http://0xlab.org

	Slide 1
	Rights to copy
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide328
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

