

Customize Real-Time Linux for Rocket Flight Control System

George Kang, Advanced Rocket Research Center, Taiwan Oct 29, 2019

About me and ARRC

- George Kang,
 - Avionics Software Manager, ARRC, Taiwan
- Advanced Rocket Research Center (ARRC)
 - Taiwan space transport research organization headquartered at National Chiao Tung University in Hsinchu City

HTTP-3a Flight Mission

- 2- stage hybrid rocket
 - Liquid Oxidant
 - Solid Fuel
- Vertical launch
- TVC control for both stages
- Liftoff weight: 800 kg
- Expected impulse:
 - ✓ Stage 1: 770,000 N-s
 - ✓ Stage 2: 310,000 N-s
- Hot staging separation
- Mission: 100 km height

Rocket Flight Control

Real Time Flight Control Model

Sensing:

- Retrieve the rocket status from sensors
- Moment, Rotation
- Computing:
 - Produce control commands for actuators through sensor data
 - Guidance/Navigation/Control (GNC)
- Actuation
 - Physical reaction by the control commands
- Real Time:
 - Response the rocket status within constraint
 - Deterministic timing

Avionics System Architecture

PRU-ICSS for Sensing I/O

Sensing Process

- Reduce the communication latency between user application and PRU
- mmap PRU resource
 - Data MEM: query result
 - INTC: Synchronization

Computing Model

Navigation

- Reduce sensor flaws
- Coordinate transformation
- Sensor fusion to increase accuracy
- Guidance
 - Optimal steering by mission & current navigation data
- Control
 - Manipulate the rocket status by N&G data
 - Produce actuation commands

PREEMPT_RT Linux

Flight Software Framework

- Based on NASA core flight System (cFS) v.6.5
 - Open source released
 - OSAL (OS abstraction layer) for Linux
 Platform
 - cFE (core Flight Executive)
 - A framework of mission independent, reusable, core flight software services and operating environment
 - cFS Libraries/Applications

Application Execution

- Implemented by POSIX thread
- Managed by the cFE Executive service
 - Start, restart, and delete
 - Priority
 - Stack size

cFE Memory Model

- Memory pool service
- Get/Put API for memory block
 - lists for returned blocks
 - allocate block from lists if found
 - create new block with requested size
- Deterministic (but restricted) allocation
 - pre-defined memory size
 - predictable but not constant execution time in multithreading env because of lock

Inter-process Communication

- Software bus
- Implemented by Linux Messag Queue
- Publish/Subscribe
 - Loosely coupled
 - Standard interface
 - Component independence
- Flight control applications on software bus

Time Service

- Precise spacecraft time
 - MET: Mission elapsed time
 - STCF: Correlate MET to ground epoch
- Timer:
 - Local 1HZ timer
 - Tone: Accurate and trusted time signal for system time adjustment
 - 1HZ for MET second 1PPS
 - External Tone by GPS receiver
 - Flywheeling while the Tone is invalid
- Distribute an 1HZ wakeup command
- Increase the Timer frequency in ARRC Rocket

Real Time Actuation Network

- Synchronized control
- Small jitter
- EtherCAT
 - master/salve:
 - cyclic operation
 - cycle time <= 100us</p>
 - jitter <= 1us</pre>
 - Distributed clock (DC)for synchronization
 - flexible topology
 - cable redundancy

Actuator Control

- EtherCAT Actuator App on cFS
- Integrate Etherlab IgH Master
- SDO (Service Data Object):
 - Initial configuration
 - Not real time
 - One-to-one communication
- PDO (Process Data Object):
 - Cyclic control data exchange
 - Real time
 - One-to-many communication

Flight Control Software

- Sequential execution
 - Sensor => GNC => Actuator
- Triggered by cFE Time Service
- Real time Issues:
 - Accuracy & precision of time service
 - Latency of software bus
 - Synchronization between PRU & CPU
 - GNC execution time
 - EtherCAT transmission time

Flight Control Evaluation

Flight Control Evaluation Process

SIL (Software in loop)

- DM & GNC in Simulator
 - Mission Planning
 - Model Development and Verification

PIL (Process in loop)

- GNC Flight Software (FSW)
 - ✓ Software Platform Integration
 - ✓ FSW Performance Evaluation

HIL (Hardware in loop)

- Integrate with the physical hardware
- Similar to real flight test

Mazu Rocket Simulation

- 6DoF (Degrees of Freedom) Rocket Simulation
- Open source project
 - https://github.com/octoberskyTW/mazu-sim
- Powered by NASA Trick simulation Framework
- Re-implement CADAC++ Three-Stage Rocket Booster Simulation as basic structure
- Customized models for ARRC rocket mission

Mazu-Sim Software Stack

Mazu SIL Simulation Results

- CADAC++ 3-Stage Rocket
- Weight:
 - Stage1: 48984 kg
 - Stage2: 15490 kg
 - Stage3: 5024 kg
- Thrust
 - Stage1: 1407866.64 N
 - Stage2: 528506.6 N
 - Stage3: 124686.51 N
- longitude and latitude
 - **-** -120.49, 34.68

Ongoing Open Source Project

- Full integrated Rocket SIL/PIL Simulation
 - CADAC++ PIL:
 - Integration of Mazu Simulation & cFS
- Contribution to cFS
 - I/O driver
 - Performance improvement

Progress of ARRC Rocket

Sounding Rocket (No Flight Control)

~ 2016

Simulator

FSW

TVC Vertical Hot Fire

Mission Plan

Ground Station

Cold Flow for Propellant feed system (2019/7)

Stage-2 Flight Test 2020/3

HTTP-3A Official Flight 2021/8

Propulsion

structure

Valve

TVC

2018/8/1

Acknowledgements

- Financial supports of this study are highly appreciated:
 - Grant No. MOST-107-2218-E-009-054 Ministry of Science and Technology of Taiwan
 - Q-530 of Advanced Rocket Research Center of National Chiao Tung University of Taiwan

Thank You!