
GUIs: Coming to Uncommon
Goods Near You
Jason Kridner

With the “smartphone effect”, proliferating in many applications
outside the consumer space, it’s become apparent that slick
graphical user interfaces (GUIs) sell. In this session, you’ll learn
how to quickly develop a GUI for your product using Linux. Learn
about cool tools such as Qt Creator and the entire Qt toolset. Soon,
your basic washing machine control panel could be just as excitiing
as a smartphone! 2/24/12 1

Agenda

•  Why fancy GUIs everywhere?
–  Which one to choose?

•  Introduction to QT
–  Hello World
–  The QT Framework

•  Exploring the examples/demos

The pinch effect - user demand

•  QNX’s Andy Gryc, senior product marketing manager for QNX Software Systems says

–  He’s seen a trained engineer “forget” how to operate an oscilloscope and attempt to use the pinch-
and-spread gesture to zoom into a scope trace.

•  Beckhoff’s McAtee takes it further.
–  “[If you] combine [multi-touch] functionality with wide format 24-in. screens, device vendors and

machine designers would be able to remove all physical push buttons from the panel, allowing the
user to manage every machine function directly on the touchscreen. This would permit easy scrolling
and zooming through dashboards and menus, beyond the capabilities of conventional touchscreen
technology.”

•  Fujitsu’s Bruce DeVisser, product marketing manager for touch input

–  technologies have crossed over into the industrial space. “Haptic feedback, embodied as a vibration
of the touch panel (like how a cell phone vibrates), is very useful for noisy industrial environments”. A
display in black mode (power-saving or screen-saver state) is unappealing to [consumer] users if it is
covered with fingerprints.

Source: http://m.controleng.com

Automotive Industrial

Portable Consumer

Home Consumer

Portable Enterprise

Accessories
Segments

The Internet of Things

Some GUI options

Skill required

Performance

JavaScript Java (C) C++ (JavaScript)

More on GUI options

Closures
(DBUS/REST/…) Activity/Intent Signals/Slots

Browser Phone/Tablet/… Cross platform

7

Qt – Getting Started

The TI SDK setup

•  Install the Sitara SDK on your host PC running Ubuntu

•  Ensure that the PATH environment variable contains qmake
–  source $(SDK_HOME)/linux-devkit/environment_setup

8

“Hello World!”

•  Create a working directory “helloworld”

•  Create a C++ source file “main.cpp” using your favorite editor with the
following contents

9

#include <QApplication>
#include <QLabel>

int main(int argc, char **argv)
{
 QApplication app(argc, argv);

 QLabel label("Hello World!");
 label.show();

 return app.exec();
}

Running “Hello World!”

10

•  Run qmake inside the helloworld directory to create a project file

•  qmake –project

•  Run qmake again to create a Makefile from helloworld.pro

•  qmake

•  Run make to build the application

•  make

•  Application is built and ready in debug/ directory. Copy executable to your
filesystem on your target and run.

Running Supplied Demo Applications

•  There are over 300 demo and example applications supplied in the SDK.
–  They come from the QT SDK and are not supported by TI
–  Wide variety of applications. The same application from QT Demo.
–  The example application already contain a project file.
–  Found at $(SDK_HOME)/linux-devkit/arm-arago-linux-gnueabi/usr/bin/qtopia

•  demos
•  examples

•  To build the supplied Demo application on your host
–  Run qmake to create a Makefile from project file *.pro

•  qmake
–  Run make to build the application

•  make
–  The application is built and ready in debug/ directory. Copy executable to your

filesystem on your target and run.

Example Applications

•  Matrix GUI Application Launcher provided in the SDK
–  Built with QT utilizing Webkit.

Matrix GUI Development - Components

•  Menus / Submenus / Description
–  Each Menu,Submenu or Description page is generated

by 1 HTML file

•  HTML files
–  Each HTML file contains a header and references up to

8 or 12 icons
–  Each icon is associated with an submenu or an

application

•  Icons
–  96x96 pixel images representing the application
–  Blank icons available for future development

•  Applications
–  Each application is associated with an icon

HTML

FILES

/usr/bin/app1

menu_main.html

Cascading Style Sheets with HTML

•  Matrix GUI contains one Cascading Style Sheet (CSS) – matrix.css
–  Each HTML file reads in matrix.css
–  matrix.css controls the look and feel of all the Matrix GUI HTML pages

•  Automatically controls spacing of the icons and text labels
•  Automatically centers the text labels underneath the icons
•  Supports wQVGA (480x272) up to 1080p resolution (1920x1080)

{color: #ffffff;} /* Default all text to white */

/* Set the background color to black */
body {background-color: #000000;}

/* This secton controls both the icon image and the text label together */
div.object
{
 text-align: center;
 float: left;
 background-color:#000000;
 width: 25%;
 height: 30%;
}

Top 15
lines of
matrix.css

Cascading Style Sheets in Action
wQVGA – 480x272 VGA – 640x480

•  Matrix GUI displayed on two different LCD displays with different resolutions

•  Only requires minor changes to the matrix.css HTML cascading stylesheet

•  Scale icons down to 64x64 for wQVGA / remain native 96x96 for VGA

•  Decrease font size for wQVGA / increase font size for VGA

•  wQVGA - each icon 45% of display in height / VGA each icon 30% height

Matrix GUI – Adding a new application
•  The HTML below represents one application associated with one Icon.

•  To add an additional application simply cut and paste this HTML segment and fill in
the <red> fields

<div class="object">
 <object type="application/x-matrix" >
 <param name="iconName" value= <“icon path”> />
 <param name="appName" value= <“application path”> />
 <param name="appParameters" value= <“parameters“> />
 </object>
 <div class="desc"> <“Label”> </div>
</div>

•  iconName, appName, and desc fields are manditory
•  appParameters and any other fields are optional

Matrix GUI – HTML Header

<body>
 <div class="topBar">
 <object type="image/svg+xml” data="/usr/share/matrix/
images/tex.svg" >

 </div>
 <div id="header">Matrix Application Launcher p1</div>
 <div class="topBar">
 <object type="application/x-matrix" >
 <param name="iconName" value="/usr/share/matrix/
images/exit-icon.png" />

 <param name="appName" value="Close" />
 </object>
 </div>
 <div class="topBar">
</div>

Application Description Pages

•  Applications can
optionally have a
description page

•  Descriptions pages:
–  Add additional info
–  Provide setup steps
–  Point out valuable

features

•  Description mode is
defaulted to on, but can
be disabled

•  Push ARM

•  Push Dhrystone

•  Push Run

•  When you push the icon to run the
application, if a description is available it
pops up.

QT Creator – Development tools

QT Demo – Application Example Projects

21

Introduction to Qt

What’s Qt?

22

•  Cross platform application / UI framework

•  Portable - Same API across desktop and embedded OS

•  Supported on various platforms

•  External ports being developed for:

§  Android

§  iPhone

§  Wayland

§  webOS, OpenSolaris, Amiga, OS/2, …

Desktop OS Embedded OS
Windows Embedded Linux
Linux/X11 Symbian
Mac OS Meego / Maemo

»  Qt is cross-platform application
and UI framework.

»  Qt provides a well defined API
that can make development
quick and easy.

»  Webkit
»  Well accepted open source web

browser
»  Rapidly create real-time web

content and services
»  Use HTML and Java Script

integrated in native code

»  3D Graphics with OpenGL and
OpenGL ES
»  Easily incorporate 3D Graphics

in your applications
»  Get maximum graphics

performance

»  Multithreading support

»  Network connectivity

»  Advanced GUI development

 Qt SDK

Qt development tools

Qt modular class library

GUI
WebKit
Graphics View
OpenGL

Multimedia

Core

XML
Scripting
Database
Network
UI Tests
Benchmarking
Font Engine

Cross-platform support

 Qt

Designer
 Forms

Builder

qmake
Cross-Platform

Build Tool

 Qt

Linguist
 I18N

Tools

 Qt

Assistant
 Help reader

Qt Creator
Cross-platform IDE

Linux/X11

Embedded
Linux

Windows
CE

Windows

QT Overview

Qt usage – these and much more …

24

KDE VLC Media Player

Skype Adobe Photoshop Album Google Earth

Webkit applications

•  Webkit

–  Google Chrome

–  Safari

–  Experimental Kindle browser

–  Matrix GUI

Qt – Brief History

• Haavard Nord & Eirik Chambe-Eng incorporated Quasar
• Became Trolltech 1994
• Qt 1.0 released
• Supported on Windows, Unix/X11
• Decision to use Qt for developing KDE 1996
• Qt 3.0 released
• Supported on Windows, Linux, Mac OS, Embedded
• Open Source license 2001
• Qt 4.0 released
• Performance optimized
• Vast application classes 2005
• Nokia acquires Trolltech
• Port for Symbian S60 platform 2008
•  Nokia announce strategic partnership with Microsoft
•  Digia acquires Qt’s commercial licensing and support 2011*

26

Qt Licensing

27

Commercial LGPL v2.1 GPL v3.0
License Cost License fee charged No license fee No license fee

Must provide source code
for changes to Qt

No, modifications can be
closed

Source code must be
provided

Source code must be
provided

Can create proprietary
application

Yes – No source code must
be disclosed

Yes, in accordance with the
LGPL v2.1 terms. (Must
dynamically link.)

No, applications are subject
to the GPL and source code
must be made available

Updates Provided Yes, immediate notice sent to
those with a valid support
and update agreement

Yes, made available Yes, made available

Support Yes, to those with a valid
support and update
agreement

Not included but available
separately for purchase

Not included but available
separately for purchase

Charge for Runtimes Yes, for some embedded
uses

No No

Qt Releases

•  Qt SDK contains the following:
§  Qt Framework - C++ classes that form the building blocks of Qt
§  Qt Creator - Cross platform IDE for developing Qt applications
§  Qt Designer - Easy GUI designer to build layout and forms
§  Qt Linguist - Tools that aid translation and internationalization
§  Qt Assistant - Documentation and help system

28

Qt Release URL

Qt SDK for
Windows

http://get.qt.nokia.com/qtsdk/qt-sdk-win-opensource-2010.05.exe

Qt SDK for
Linux

http://get.qt.nokia.com/qtsdk/qt-sdk-linux-x86-
opensource-2010.05.1.bin

Qt Framework
for Embedded
Linux

http://get.qt.nokia.com/qt/source/qt-everywhere-opensource-
src-4.7.2.tar.gz

29

Qt Framework & Internals

Qt - Application development flow

30

Build Qt for target

Create .pro file

Design the UI in Qt
designer

Add necessary
event handlers

Add necessary
application code

Build & Install

Qt Framework – Application Classes

31

Qt Framework – Software Stack

FB

Cairo

Qt API (Linux / WinCE)

GDI
DirectFB D

D
r
a
w

Surface Managers

X Win32/ Windowing System
Window System/Mgrs

Application Framework

HW Device

Tslib, Mouse GWES Input Device Manager

Qt/e Qt/X

QWS

Widgets (1/2)

•  Qt UI framework is based on widgets

•  Widgets respond to UI events (key presses/
mouse movements), and update their screen
area

•  Each widget has a parent, that affects its
behavior, and is embedded into it

•  Most Qt classes are derived from QWidget
–  Ex, QGLWidget, QPushbutton …

 QPushButton * myButton = new
QPushButton(…);

 myButton->doSomethingAPI();
•  Refer to online documentation at

–  http://doc.qt.nokia.com/4.6/qwidget.html
–  Tip – Documentation is arranged using class names.

33

Widgets (2/2)

34
QPushButton Qlabel

Q
M
a
i
n
W
i
n
d
o
w

QComboBox
QDoubleSpinBox

Q
S
l
i
d
e
r

QWTPlotCurve QHBoxLayout

QWTPlotCurve QHBoxLayout
Widgets (2/2) QComboBox

QDoubleSpinBox

QPushButton Qlabel QMainWindow QMessageBox

Q
S
l
i
d
e
r

Painting in Qt (1/2)

•  QPainter
–  Low level painting API for overriding default painting behavior
–  Uses Pen, Brush, Color to draw
–  Can paint various shapes

•  Point(s)
•  Line(s)
•  Rectangle
•  Ellipse
•  Polygon
•  Arc
•  Polygon
•  Text
•  Image

–  Supports transformations – scale, rotate, translate, shear
–  Paints on a QPaintDevice object

36

Painting in Qt (2/2)

•  QPaintDevice
–  Objects that can be painted by a QPainter using QPaintEngine
–  Could be

•  QWidget
•  QImage
•  QPixmap
•  QGLPixelBuffer
•  QPicture
•  QPrinter

•  QPaintEngine
–  Specifies how painting is to be done for a specific device
–  Support for

•  X11
•  CoreGraphics
•  OpenGL
•  Raster Paint

37

3D graphics in Qt

•  Allows 3D operations to be performed in a widget

•  As like any widget, QGLWidget operates on a target buffer

•  QGLWidget is implemented in src\opengl\qgl.cpp

38

Graphics View Framework

•  Provides a “Canvas” for adding items (QGraphicsItems)

•  The QGraphicsView class provides a widget for displaying the contents
of a QGraphicsScene

•  By default, QGraphicsView provides a regular QWidget for the viewport
widget.
–  Can replace default by calling setViewport() with another widget type

•  Provides a way to build an UI in an “actual” drawing canvas
–  Ex, concept of “z-depth” of a QGraphicsItem

•  To render using OpenGL, simply call:
–  setViewPort(new QGLWidget)

39

Signals & Slots

•  Signal / Slot mechanism provides a functionality similar to setting up “function
pointers”

–  Provides better type checking, amongst others

•  Example Use-case: Perform blocking/ time consuming activities in separate
thread

–  Use paintEvent() to trigger/consume the result of actions happening in parallel (ex.
Upload next video frame)

•  How to communicate events ?
–  Use SIGNAL/SLOT to communicate event completions

•  Usage example for Signal/Slots:
–  “browserlib” app in xgxperf

•  Found in /Xgxperf/browserlib/browserlib.cpp

40

Using SIGNAL / SLOT

41

Class myClass: public QWidget

{

Q_OBJECT /* Needed for signal/slot mechanism to work at runtime */

public: …

signals:

 void function1(const QImage &image, double scaleFactor);

};

In thread code,
 emit function1(image, scaleFactor);

In Main application, define the actual function::
void myWidget::mainWidgetFunction(const QImage &image, double scaleFactor){}
…
And connect the signal and slot:
connect(&thread, SIGNAL(mainWidgetFunction(const QImage &, double)),

 this, SLOT(function1(const QImage &, double)));

Qt/Embedded Linux Pipeline

42

Screen Driver Architecture

•  Specific to Qt/Embedded Linux

•  QWS Server loads the screen driver at initialization. Can be
specified at run time by “-display <screen driver>”

•  QWS supports Linux FB, Virtual FB, VNC, Multi Screen. Default
is Linux FB at /dev/fb0

•  Qt also supports SGX based powervr

 screen driver

•  Netra supports FBDev driver on

 Cortex-A8. This internally uses SysLink

 to communicate with HDVPSS drivers on M3

43

Conclusion

•  Qt with QML is an excellent choice for developing highly performing
GUIs on all sorts of affordable devices

•  Android is growing in complexity/cost, but is an excellent choice if you
need access to the App Market

•  Tools for HTML5 have yet to emerge, but keep an eye out for them

2/24/12 “TI Proprietary Information - Strictly Private” or similar placed here if applicable 44

Thank you!

2/24/12 45

46

Qt on TI Software Development Kits (SDK)

Software Components & Architecture
Matrix Application Launcher

2D Accel

Qt Embedded

QWidget QGLWidget

OpenGL ES

ARM
Benchmarks Pwr/Clk Browser Sys Info

System on Chip

Target Board

FBDEV

DSS2

V4L2

ALSA

McSPI

USB MMC/SD UART

Ethernet Touch
screen

2D/3D

BlueZ

GStreamer

FFMPEG
(MPG4, H.264, AAC)

Wifi

WLAN

Backup stuff – matrix gui

ARM MPU – Sitara Microprocessors

2/24/12 “TI Proprietary Information - Strictly Private” or similar placed here if applicable 48

2/24/12 “TI Proprietary Information - Strictly Private” or similar placed here if applicable 49

Agenda

•  Application Frameworks

•  Qt/Webkit Overview

•  2D/3D Graphics

•  Java

•  Flash 10.x

•  HTML5/CSS3

•  DSS Features

•  Examples
–  Matrix GUI
–  Matrix TUI

Qt Embedded / Webkit
•  Qt is cross-platform application

and UI framework.

•  Qt provides a well defined API that
can make development quick and
easy.

•  Webkit
–  Well accepted open source web

browser
–  Rapidly create real-time web

content and services
–  Use HTML and Java Script

integrated in native code

•  3D Graphics with OpenGL and
OpenGL ES

–  Easily incorporate 3D Graphics in
your applications

–  Get maximum graphics
performance

•  Multithreading support

•  Network connectivity

•  Advanced GUI development

 Qt SDK

Qt development tools

Qt modular class library

GUI
WebKit
Graphics View
OpenGL

Multimedia

Core

XML
Scripting
Database
Network
UI Tests
Benchmarking
Font Engine

Cross-platform support

Linux/X11

Embedded

Linux

Windows

CE

 Qt

Designer
 Forms

Builder

qmake
Cross-Platform

Build Tool

 Qt

Linguist
 I18N

Tools

 Qt

Assistant
 Help reader

Qt Creator
Cross-platform IDE

Windows

