
Embedded Graphics
Drivers in Mesa

About GPUs
• It is a specialized electronic circuit designed to

rapidly manipulate and alter memory to accelerate
the creation of images in a frame buffer intended
for output to a display device. Wikipedia.

• They are becoming increasingly general purpose
processors that can run programs (shaders).

• They are highly threaded and typically use SIMD to
operate on multiple inputs at the same time.

• Still contain fixed function pieces for graphics-
specific functions:
• Texture sampling
• Primitive assembly
• etc

Linux graphics stack

based on diagram by Shmuel Csaba Otto Traian; GNU FDL 1.3+ and CC-BY-SA 3.0+; created 2014-03-02, last updated 2015-05-30

System Call Interface (SCI)

Hardware

Linux kernel

Wayland Compositor or
 X server

3D
computer
game

DRM

GPU

Mesa 3D

DRM
library Subroutines

Graphics
RAM

Display
controller

KMS

Screen

Game engine

Geometry
data

Texture
data

Sound
data

X11 protocolWayland
protocol or

or

Graphics APIs

• OpenGL 1.0 was released in January 1992 by
Silicon Graphics (SGI).

• Based around SGI hardware of the time which had
very fixed functionality.

• Eg, explicit API to draw a triangle with a colour:

/* Set a blue colour */
glColor3f(0.0f, 0.0f, 1.0f);
/* Draw a triangle, describing its points */
glBegin(GL_TRIANGLES);
 glVertex3f(0.0f,1.0f,0.0f);
 glVertex3f(-1.0f,-1.0f,0.0f);
 glVertex3f(1.0f,-1.0f,0.0f);
glEnd();

• In 2004 OpenGL 2.0 was released.
• Introduced the concept of shaders.
• Can now influence the rendering with programs

called shaders.
• Eg, choose a colour programatically:

void main()
{
 /* Choose the colour based on the X-position of the pixel */
 gl_FragColor = vec4(gl_FragCoord.x * 0.008 - 1.0, 0.0, 0.0, 1.0);
}

• In later versions of GL more and more functionality
is moved into the programmable shaders.

• Much more programmable, much less fixed-
function.

• Inputs are more often given in buffers rather than
via API calls.

• Eg, vertex data now in a buffer:

Position Colour
-1 -1 0xff0000ff
0 -1 0xff0000ff
-1 0 0xff0000ff
0 -1 0xff0000ff
-1 0 0xff0000ff
0 0 0xff0000ff

Buffer containing
vertices

glVertexAttribPointer(0, 2, GL_FLOAT,
 GL_FALSE, 12, 0);
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE,
 GL_TRUE, 12, 8);

Commands describing
buffer layout

OpenGL ES
• Simplified version of OpenGL targetting embedded

devices.
• Removes most of the legacy cruft and things that

are hard to implement in hardware.
• Is increasingly similar to modern versions of

OpenGL which also try to deprecate old
functionality.

• Vulkan 1.0 released in 2016
• Clean break from legacy OpenGL
• Much less driver overhead
• Everything is specified in buffers
• The application has the responsibility to manage

buffers and synchronisation.
• Harder to use but allows applications to exploit the

hardware better
• Suitable for both embedded and desktop hardware

Mesa

• Open-source implementation of the OpenGL and
Vulkan specifications for a variety of hardware on
user-space as a library.

• The Mesa project was originally started by Brian
Paul.
• Version 1.0 released in February 1995.
• Originally used only software rendering
• Now has support for many different hardware

devices
• Current version is 19.2.

• There are drivers for:
• Intel (i965, i915, anv)
• AMD (radv, radeonsi, r600)
• NVIDIA (nouveau)
• Imagination Technologies (imx)
• Broadcom (vc4, vc5)
• Qualcomm (freedreno)
• Software renderers (classic swrast, softpipe,

llvmpipe, OpenSWR)
• VMware virtual GPU
• Etc

• Supports:
• OpenGL 4.6
• OpenGL ES 3.2
• Vulkan 1.1

• All are the latest versions
• Caveat: not all drivers support the latest version

Architecture of Mesa

GalliumDRIMesa
state tracker

Application

i965

Freedreno

Panfrost

nvc0

vc4

r600

Mesa

Drivers

O
pe

nG
L

AP
I

Callback interface for
drivers

Shared state tracker
for simpler

driver interface
State tracker to
manage GL API

• Mesa has a loader that selects the driver by asking
for the vendor id, chip id... from the kernel driver
via DRM.

• There is a map of PCI IDs and user-space Mesa
drivers.

• When it is found, Mesa loads the respective driver
and sees if the driver succeeds

• In case of failure, the loader tries software
renderers.

• It is possible to force software renderer
• LIBGL ALWAYS SOFTWARE=1

• The GL API is filtered through the Mesa state
tracker into a simpler set of callbacks into the
driver.
• This handles many things such as GL’s weird

object management.
• Unifies different APIs from different versions of

GL.
• For the i965 Intel driver, these callbacks are

handled directly.
• For most other drivers, Gallium is used as an extra

layer.
• This handles even more state tracking such as

caching state objects.
• Drivers have even less code to implement.

Compiler architecture

GLSL IR

GLSL shader

i965

Freedreno

llvmpipe

radeonsi

vc4

r600

Mesa

Drivers

Abstract syntax
tree

SPIR-V shader

LLVM

TGSINIR

Used in Vulkan
or optionally in
OpenGL 4.6

Shader compiled
to SPIR-V by
application

High-level
intermediate
representation

Lowlevel IR
many optimisations
performed here

IR used by Gallium

External general
compiler project

GLSL example
uniform vec4 args1, args2;

void main()
{
 gl_FragColor = log2(args1) + args2;
}

GLSL IR
GLSL IR for native fragment shader 3:
(
(declare (location=2 shader_out) vec4 gl_FragColor)
(declare (location=0 uniform) vec4 args1)
(declare (location=1 uniform) vec4 args2)
(function main
 (signature void
 (parameters)
 (
 (assign (xyzw)
 (var_ref gl_FragColor)
 (expression vec4 + (expression vec4 log2 (var_ref args1))
 (var_ref args2)))
))
)
)

NIR
impl main {

block block_0:
/* preds: */
vec1 32 ssa_0 = load_const (0x00000000 /* 0.000000 */)
vec4 32 ssa_1 = intrinsic load_uniform (ssa_0) (0, 16, 160)
vec1 32 ssa_2 = flog2 ssa_1.x
vec1 32 ssa_3 = flog2 ssa_1.y
vec1 32 ssa_4 = flog2 ssa_1.z
vec1 32 ssa_5 = flog2 ssa_1.w
vec4 32 ssa_6 = intrinsic load_uniform (ssa_0) (16, 16, 160)
vec1 32 ssa_7 = fadd ssa_2, ssa_6.x
vec1 32 ssa_8 = fadd ssa_3, ssa_6.y
vec1 32 ssa_9 = fadd ssa_4, ssa_6.z
vec1 32 ssa_10 = fadd ssa_5, ssa_6.w
vec4 32 ssa_11 = vec4 ssa_7, ssa_8, ssa_9, ssa_10
intrinsic store_output (ssa_11, ssa_0) (4, 15, 0, 160)
/* succs: block_1 */
block block_1:

}

Intel i965 instruction set
 START B0 (54 cycles)
math log(16) g3<1>F g2<0,1,0>F null<8,8,1>F
math log(16) g5<1>F g2.1<0,1,0>F null<8,8,1>F
math log(16) g7<1>F g2.2<0,1,0>F null<8,8,1>F
math log(16) g9<1>F g2.3<0,1,0>F null<8,8,1>F
add(16) g120<1>F g3<8,8,1>F g2.4<0,1,0>F
add(16) g122<1>F g5<8,8,1>F g2.5<0,1,0>F
add(16) g124<1>F g7<8,8,1>F g2.6<0,1,0>F
add(16) g126<1>F g9<8,8,1>F g2.7<0,1,0>F
sendc(16) null<1>UW g120<8,8,1>UD 0x90031000
 render MsgDesc: RT write SIMD16 LastRT mlen 8 rlen 0
 END B0

Embedded drivers

Freedreno
• For Qualcomm Adreno devices
• Started by Rob Clark in 2012
• Reversed engineered
• Supports GL 3.1 and GLES 3.1
• Continued development by Google and Igalia

Devices
• Phones/Tablets:

• Nexus 4 (a3xx)
• Nexus 7 Flo (a3xx)
• Pixel 3a (a6xx)

• ARM boards:
• Inforce 6540 (a4xx)
• Inforce 6640 (a5xx)
• bSTem (a3xx)
• apq8074 dragonboard (a3xx)

vc4
• For Broadcom VideoCore IV GPUs
• Used in the Raspberry Pi 3
• Written by Eric Anholt while working at Broadcom
• Developed using the released docs from Broadcom
• Supports OpenGL ES 3.1
• Under continued development including by Igalia

vc3d
• Project to create a driver for the VideoCore VI GPU

in the Rasperry Pi 4
• Very different architecture to the previous one
• Also started by Eric Anholt
• Being continued by Igalia

Panfrost
• For ARM Mali Txxx (Midgard) and Gxx (Bifrost) GPUs
• Used in Chromebooks
• Started by Alyssa Rosenzweig
• Reverse engineered
• Merged into Mesa master
• ARM is now contributing to it too
• Demo from XDC 2019 shows running desktop GL

2.0
• They are looking to support GL 3.0 and Vulkan

Thanks

Questions?

	About GPUs
	Linux graphics stack
	Graphics APIs
	OpenGL
	OpenGL ES

	Vulkan

	Mesa
	Architecture of Mesa
	Compiler architecture
	GLSL example
	GLSL IR
	NIR
	Intel i965 instruction set

	Embedded drivers
	Freedreno
	Devices

	vc4
	vc3d
	Panfrost

	Thanks
	Questions?

