
Embedded Graphics
Drivers in Mesa



About GPUs
• It is a specialized electronic circuit designed to 

rapidly manipulate and alter memory to accelerate 
the creation of images in a frame buffer intended 
for output to a display device. Wikipedia.



• They are becoming increasingly general purpose 
processors that can run programs (shaders).

• They are highly threaded and typically use SIMD to 
operate on multiple inputs at the same time.

• Still contain fixed function pieces for graphics-
specific functions:
• Texture sampling
• Primitive assembly
• etc



Linux graphics stack
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Graphics APIs





• OpenGL 1.0 was released in January 1992 by 
Silicon Graphics (SGI).

• Based around SGI hardware of the time which had 
very fixed functionality.

• Eg, explicit API to draw a triangle with a colour:

/* Set a blue colour */
glColor3f(0.0f, 0.0f, 1.0f);
/* Draw a triangle, describing its points */
glBegin(GL_TRIANGLES);
 glVertex3f(0.0f,1.0f,0.0f);
 glVertex3f(-1.0f,-1.0f,0.0f);
 glVertex3f(1.0f,-1.0f,0.0f);
glEnd();



• In 2004 OpenGL 2.0 was released.
• Introduced the concept of shaders.
• Can now influence the rendering with programs 

called shaders.
• Eg, choose a colour programatically:

void main()
{
        /* Choose the colour based on the X-position of the pixel */
        gl_FragColor = vec4(gl_FragCoord.x * 0.008 - 1.0, 0.0, 0.0, 1.0);
}



• In later versions of GL more and more functionality 
is moved into the programmable shaders.

• Much more programmable, much less fixed-
function.

• Inputs are more often given in buffers rather than 
via API calls.

• Eg, vertex data now in a buffer:

# Position      Colour
-1 -1           0xff0000ff
0  -1           0xff0000ff
-1 0            0xff0000ff
0  -1           0xff0000ff
-1 0            0xff0000ff
0  0            0xff0000ff

Buffer containing
vertices

glVertexAttribPointer(0, 2, GL_FLOAT,
                      GL_FALSE, 12, 0);
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE,
                      GL_TRUE, 12, 8);

Commands describing
buffer layout



OpenGL ES
• Simplified version of OpenGL targetting embedded 

devices.
• Removes most of the legacy cruft and things that 

are hard to implement in hardware.
• Is increasingly similar to modern versions of 

OpenGL which also try to deprecate old 
functionality.





• Vulkan 1.0 released in 2016
• Clean break from legacy OpenGL
• Much less driver overhead
• Everything is specified in buffers
• The application has the responsibility to manage 

buffers and synchronisation.
• Harder to use but allows applications to exploit the 

hardware better
• Suitable for both embedded and desktop hardware



Mesa



• Open-source implementation of the OpenGL and 
Vulkan specifications for a variety of hardware on 
user-space as a library.

• The Mesa project was originally started by Brian 
Paul.
• Version 1.0 released in February 1995.
• Originally used only software rendering
• Now has support for many different hardware 

devices
• Current version is 19.2.



• There are drivers for:
• Intel (i965, i915, anv)
• AMD (radv, radeonsi, r600)
• NVIDIA (nouveau)
• Imagination Technologies (imx)
• Broadcom (vc4, vc5)
• Qualcomm (freedreno)
• Software renderers (classic swrast, softpipe, 

llvmpipe, OpenSWR)
• VMware virtual GPU
• Etc



• Supports:
• OpenGL 4.6
• OpenGL ES 3.2
• Vulkan 1.1

• All are the latest versions
• Caveat: not all drivers support the latest version





Architecture of Mesa
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• Mesa has a loader that selects the driver by asking 
for the vendor id, chip id... from the kernel driver 
via DRM.

• There is a map of PCI IDs and user-space Mesa 
drivers.

• When it is found, Mesa loads the respective driver 
and sees if the driver succeeds

• In case of failure, the loader tries software 
renderers.

• It is possible to force software renderer
• LIBGL ALWAYS SOFTWARE=1



• The GL API is filtered through the Mesa state 
tracker into a simpler set of callbacks into the 
driver.
• This handles many things such as GL’s weird 

object management.
• Unifies different APIs from different versions of 

GL.
• For the i965 Intel driver, these callbacks are 

handled directly.
• For most other drivers, Gallium is used as an extra 

layer.
• This handles even more state tracking such as 

caching state objects.
• Drivers have even less code to implement.



Compiler architecture
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GLSL example
uniform vec4 args1, args2;

void main()
{
        gl_FragColor = log2(args1) + args2;
}



GLSL IR
GLSL IR for native fragment shader 3:
(
(declare (location=2 shader_out ) vec4 gl_FragColor)
(declare (location=0 uniform ) vec4 args1)
(declare (location=1 uniform ) vec4 args2)
( function main
  (signature void
    (parameters)
    (
      (assign  (xyzw)
               (var_ref gl_FragColor)
               (expression vec4 + (expression vec4 log2 (var_ref args1) )
                                  (var_ref args2) ) ) 
    ))
)
)



NIR
impl main {

block block_0:
/* preds: */
vec1 32 ssa_0 = load_const (0x00000000 /* 0.000000 */)
vec4 32 ssa_1 = intrinsic load_uniform (ssa_0) (0, 16, 160)
vec1 32 ssa_2 = flog2 ssa_1.x
vec1 32 ssa_3 = flog2 ssa_1.y
vec1 32 ssa_4 = flog2 ssa_1.z
vec1 32 ssa_5 = flog2 ssa_1.w
vec4 32 ssa_6 = intrinsic load_uniform (ssa_0) (16, 16, 160)
vec1 32 ssa_7 = fadd ssa_2, ssa_6.x
vec1 32 ssa_8 = fadd ssa_3, ssa_6.y
vec1 32 ssa_9 = fadd ssa_4, ssa_6.z
vec1 32 ssa_10 = fadd ssa_5, ssa_6.w
vec4 32 ssa_11 = vec4 ssa_7, ssa_8, ssa_9, ssa_10
intrinsic store_output (ssa_11, ssa_0) (4, 15, 0, 160)
/* succs: block_1 */
block block_1:

}



Intel i965 instruction set
   START B0 (54 cycles)
math log(16)    g3<1>F          g2<0,1,0>F      null<8,8,1>F
math log(16)    g5<1>F          g2.1<0,1,0>F    null<8,8,1>F
math log(16)    g7<1>F          g2.2<0,1,0>F    null<8,8,1>F
math log(16)    g9<1>F          g2.3<0,1,0>F    null<8,8,1>F
add(16)         g120<1>F        g3<8,8,1>F      g2.4<0,1,0>F
add(16)         g122<1>F        g5<8,8,1>F      g2.5<0,1,0>F
add(16)         g124<1>F        g7<8,8,1>F      g2.6<0,1,0>F
add(16)         g126<1>F        g9<8,8,1>F      g2.7<0,1,0>F
sendc(16)       null<1>UW       g120<8,8,1>UD   0x90031000
                render MsgDesc: RT write SIMD16 LastRT mlen 8 rlen 0
   END B0



Embedded drivers



Freedreno
• For Qualcomm Adreno devices
• Started by Rob Clark in 2012
• Reversed engineered
• Supports GL 3.1 and GLES 3.1
• Continued development by Google and Igalia



Devices
• Phones/Tablets:

• Nexus 4 (a3xx)
• Nexus 7 Flo (a3xx)
• Pixel 3a (a6xx)

• ARM boards:
• Inforce 6540 (a4xx)
• Inforce 6640 (a5xx)
• bSTem (a3xx)
• apq8074 dragonboard (a3xx)



vc4
• For Broadcom VideoCore IV GPUs
• Used in the Raspberry Pi 3
• Written by Eric Anholt while working at Broadcom
• Developed using the released docs from Broadcom
• Supports OpenGL ES 3.1
• Under continued development including by Igalia



vc3d
• Project to create a driver for the VideoCore VI GPU 

in the Rasperry Pi 4
• Very different architecture to the previous one
• Also started by Eric Anholt
• Being continued by Igalia



Panfrost
• For ARM Mali Txxx (Midgard) and Gxx (Bifrost) GPUs
• Used in Chromebooks
• Started by Alyssa Rosenzweig
• Reverse engineered
• Merged into Mesa master
• ARM is now contributing to it too
• Demo from XDC 2019 shows running desktop GL 

2.0
• They are looking to support GL 3.0 and Vulkan





Thanks

Questions?
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