Open Trust Protocol (OTrP)

Technical and RFC Draft

12th October 2016

Christian Brindley
IoT Technical Specialist, Symantec

OTrP Spec History

- Joint effort from Open Trust Protocol Alliance founding member companies
 - o ARM, Intercede, Solacia, Symantec
- A message protocol to define trust hierarchy and Trusted Application (TA) management over the air by SP via TSM
 - o Basing on standard PKI
 - Trust establishment from end-to-end
 - FW → TEE → TA → TSM / SP
 - Allow different TEE and TSM with trust selection
- Open standards
 - o RFC Draft: July 8, 2016, 96-th IETF
 - https://tools.ietf.org/html/draft-pei-opentrustprotocol-01
 - Global Platform submission consideration

Background Context

- Challenges and Proposals

Trusted Execution Environment and TAs

The Challenge

How to access hardware security when fragmentation is growing?

- Adoption gap for service providers: gap between devices with hardware security and a wish to push keys/Trusted Apps to devices with different TEEs and vendors
- Fragmentation is growing IOT will accelerate that fragmentation
- Lack of standards to manage TAs
 - Devices have hardware based Trusted Execution Environments (TEE) but they do not have a standard way of managing those security domains/TAs
 - o e.g. how to install / delete a Trusted App?

Open Trust Ecosystem

Open Trust Protocol

6

Solution: Open Trust Protocol

OTrP Design Goals

- Simplify trusted provisioning of connected devices
- Designed to work with any "hardware secure environment"
 - Starting with TrustZone based TEE with wide potential in Mobile and IOT
- Creating a free specification for industry use
- Focus on re-use of existing schemes (CA and PKI) and ease of implementation (keeping message protocol high level)

Benefits of OTrP

Built-in Trust and Privacy

- Device Trusted Firmware and TEE identity information is never exposed to Client Applications
- Device generated key for runtime anonymous attestation

Interoperability & Easy Adoption

 Reduce cost of research and development through royalty-free, open standards-based specifications, technical collaboration and solution component integration

Scalability

Flexible model that relies on independent certification and managed trust

No "Vendor Lock"

Open ecosystem that offers broader vendor choice for flexible, best-in-class solution deployment

Innovation

· Service Providers can focus on added-value and best use of hardware security capabilities

OTrP RFC Spec

Basic Concept

- Open and Secure framework for Over-The-Air management of Secure Keys and Trusted Application (TA)
- Based on the standard PKI (Public Key Infrastructure)
 - ✓ PKI trust anchors embedded in end-points and configured in services
- Attestation between TAM and TEE-device with Key pair and Certificate for remote integrity check
- Cryptography based authentication with certified asymmetric device keys

Technical Spec Content

- Define trust relationship of entities
- Define JSON messages for trust and remote TA management between a TSM and TEE
 - Messages for device attestation (device integrity check) by a TSM and a device to trust a TSM
 - Messages for Security domain management and TA management
 - Network communication among entities are left to implementations
- Define an OTrP Agent in REE (Rich Execution Environment)
 - Necessary component from REE of a device to relay message exchanges between a TSM and TEE
- Use standard PKI artifacts and algorithms
- Use standard JSON messages and JSON security RFCs

Entity Key Architecture and Trust Model

Usage

* Key pair and Certificate: used to issue certificate

* Key pair and Certificate: used to sign a TA

Key

Usage

* Key pair and Certificate: sign OTrP requests to be verified by TEE

- * Key pair and Certificate: device attestation to remote TAM and SP.
- * SP AIK

to encrypt TA binary data

* Key pair and Certificate: evidence of secure boot and trustworthy firmware

* AIK: Attestation Identity Key, TFW: Trusted Firmware

OTrP System Architecture

- CA issues certificates to all OTrP Components (TEE, TAM, TFW, SP)
- TAM vendor provides the SDK to communicate with TAM from Client Application
- TAM communicates with OTrP Agent to relay the OTrP message between TAM and TEE

TEE-Device

OTrP Spec Scope

OTrP Agent

- Responsible for routing OTrP Messages to the appropriate TEE
- Most commonly developed and distributed by TEE vendor
- Implements an interface as a service, SDK, etc.

OTrP Agent API

```
interface IOTrPAgentService {
    String processMessage(String tsmInMsg) throws OTrPAgentException;
    String getTAInformation(String spid, String taid, byte[] nonce);
}

public class OTrPAgentException extends Throwable {
    private int errCode;
}
```

OTrP Operations and Messages

✓ Remote Device Attestation

Command	Descriptions		
GetDeviceState	Retrieve information of TEE device state including SD and TA associated to a TAM		

✓ Security Domain Management

Command	Descriptions		
CreateSD	Create SD in the TEE associated to a TAM		
UpdateSD	Update sub-SD within SD or SP related information		
DeleteSD	Delete SD or SD related information in the TEE associated to a TAM		

✓ Trusted Application Management

Command	Descriptions		
InstallTA	Install TA in the SD associated to a TAM		
UpdateTA	Update TA in the SD associated to a TAM		
DeleteTA	Delete TA in the SD associated to a TAM		

Protocol Flow

- Security of the Operation Protocol is enhanced by applying the following three Measures:
 - ✓ Verifies validity of Message Sender's Certificate
 - ✓ Verifies signature of Message Sender to check immutability
 - ✓ Encrypted to guard against exposure of Sensitive data

TA	M	Client App	TEE	
Phase#1 "Device Attestation" Operation request triggered and verify Device state information	Request to TSM for TA installation Send [GetDeviceState] to TEE Return DSI as a response to [GetDeviceState]	•]	-	
Phase#2 Prerequisite operation (if Security domain doesn't exist where the TA should be installed)	Send [CreateSD]to create SD where the TA will be send other prerequisite commands (if necessary)	pe installed	>	✓ Create new SD
Phase#3 Perform Operation requested by SP or Client Application	Send [installTA] with encrypted TA binary and its d	ata		 ✓ Decrypt TA binary and its personal data. ✓ Install TA into target SD. ✓ Store personal data in TA's private storage.

JSON Message Security and Crypto Algorithms

- Use JSON signing and encryption RFCs
 - o RFC 7515, JSON Web Signature (JWS)
 - o RFC 7516, JSON Web Encryption (JWE)
 - o RFC 7517, JSON Web Key (JWK)
 - o RFC 7518, JSON Web Algorithms (JWA)
- Supported encryption algorithms
 - o A128CBC-HS256
 - o A256CBC-HS512
- Supported signing algorithms
 - o RS256 (RSA 2048-bit key)
 - o ES256 (ECC P-256)
- Examples
 - o {"alg":"RS256"}
 - o {"alg":"ES256"}
 - o {"enc":"A128CBC-HS256"}

OTrP JSON Message Format and Convention

```
{
  "<name>[Request | Response]": {
    "payload": "<payload contents of <name>TBS[Request | Response]>",
    "protected":"<integrity-protected header contents>",
    "header": <non-integrity-protected header contents>,
    "signature":"<signature contents>"
}
```

For example:

- CreateSDRequest
- CreateSDResponse

OTrP JSON Sample Message: GetDeviceState

```
"GetDeviceStateTBSRequest": {
  "ver": "1.0".
  "rid": "<Unique request ID>",
  "tid": "<transaction ID>",
  "ocspdat": "<OCSP stapling data of TSM certificate>",
  "icaocspdat": "<OCSP stapling data for TSM CA certificates>",
  "supportedsigalas": "<comma separated signing algorithms>"
 "GetDeviceStateRequest": {
  "payload":"<BASE64URL encoding of the GetDeviceStateTBSRequest JSON above>",
 "protected": "<BASE64URL encoded signing algorithm>",
  "header": {
    "x5c": "<BASE64 encoded TSM certificate chain up to the root CA certificate>"
  "signature":"<signature contents signed by TSM private key>"
```

OTrP Sample Message: CreateSD Request

```
"CreateSDTBSRequest": {
 "ver": "1.0".
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON data will be encrypted
    "spid": "<SP ID value>",
  "sdname": "<SD name for the domain to be created>",
  "spcert": "<BASE64 encoded SP certificate>",
   "tsmid": "<An identifiable attribute of the TSM certificate>",
   "did": "<SHA256 hash of the TEE cert>"
```

OTrP Sample Message: CreateSD Response

```
"CreateSDTBSResponse": {
  "ver": "1.0",
  "status": "<operation result>",
  "rid": "<the request ID received>",
  "tid": "<the transaction ID received>",
  "content": ENCRYPTED {
    "reason":"<failure reason detail>", // optional
    "did": "<the device id received from the request>",
    "sdname": "<SD name for the domain created>",
    "teespaik": "<TEE SP AIK public key, BASE64 encoded>",
    "dsi": "<Updated TEE state, including all SD owned by this TSM>"
```

Thank you!

Q&A

Contact: christian_brindley@symantec.com