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About Me

• Involved in Yocto Project since 2013

• Work across the whole embedded stack

• Managing Director & Principal Engineer 
@ Beta Five Ltd

• Contact: paul@betafive.co.uk
• Website: https://www.betafive.co.uk/

mailto:paul@betafive.co.uk
https://www.betafive.co.uk/


Disclaimer

• This is not legal advice

• Best practices are given based on my 
experience as a developer and an open source 
community member

• If in doubt, consult an appropriate lawyer



About This Talk
• Best practices and pitfalls to avoid

– Build system agnostic

• License Compliance in Yocto Project
– Available tools
– Ongoing and future work
– Comparisons with other projects

• Other relevant projects



Not Covered Here

• DRM/Tivo-isation concerns

• How to interpret licenses
– What do we need to provide in each case?



Why Care?

• Selling an embedded device typically involves 
distribution of open source software

• This carries the risk of legal action if not done 
properly

• Doing this right gives you standing in the 
community



Another Reason Why

• You should be retaining full sources anyway!

• Need to be able to rebuild old releases with 
minor changes
– For debugging
– To satisfy customer requests

• Sources often disappear from the internet



The Fundamentals

• Provide license text and notices (BSD, MIT, etc)
– On device?
– In documentation?
– On website?

• Provide Complete Corresponding Source (GPL)
– Published directly?
– Via an offer letter?



The Distributed Image

• This is the image that’s actually distributed

• For devices: What is on the device when it is 
shipped to a customer?

• For downloads: What is in the file a customer 
downloads?



Single Command Build

• Probably the most important practice

• Reduces human error in build/release process



Test Your Releases!

• Your build/release process is non trivial

• It needs tests!
– Check for expected artifacts
– Check inside tarballs as well
– Check you can rebuild from source releases

• Automate your tests



Use Your Build System

• Build the Distributed Image with Yocto Project, 
Buildroot, etc

• Avoid modifying this image in a post-build script
– Lose access to the tools in your build system
– Easy to break license compliance this way

• You can move, copy, compress, etc the image in a 
post-build script



Factory Test

• What happens on device between initial image 
programming and distribution?

• On-device package management at this stage 
complicates things
– Again, very easy to break license compliance

• Try to limit additional data added at this stage
– Configuration data, calibration data, etc is fine



Proprietary Components

• License compliance also means not releasing 
source for proprietary components
– You need some filtering

• Test for accidental release!

• May be useful to have a separate pure open 
source image



Source Patches

• Remember to include these with sources

• Watch out for hidden patches
– Use of sed or similar tools in recipes or build scripts

• Make sure your system records the patch order



Recipes and Build Scripts

• GPLv2 says to include “scripts used to control 
compilation and installation”

• This may include full Yocto Project layers & 
bitbake, full buildroot tree, etc as appropriate

• There are different interpretations here
– IANAL



Using Desktop/Server distros

• Just say no

• Difficult to audit license compliance

• Difficult to provide all required source code



Docker

• A Dockerfile is not the Complete Corresponding 
Source for an image

• You may not even know exactly what is installed 
in your base image (FROM statement)

• Watch out when using containers in Embedded 
Linux



Pre-compiled Toolchains

• E.g. ARM toolchain, Linaro toolchain
– Built around gcc, glibc, etc

• Libraries from this toolchain typically end up in 
the distributed image

• Remember to capture the source code for this
– May not be well automated



Language-Specific Package Managers

• E.g. NPM, Cargo, etc

• These are often trash on fire
– May not support offline compilation well
– May not offer an easy way to get the license text 

and/or correct source for dependencies

• You need to do your own research here



Other Insanities

• Watch out for unadvertised network access in 
Makefiles or other build scripts
– May download additional sources with different license 

conditions
– May use online tools during build process, breaking 

offline builds

• Every sin you can think of exists in a project 
Makefile somewhere



Metadata Bugs

• Licenses given in recipes may be incorrect or 
incomplete
– This does happen!

• Follow stable updates where possible

• For major commercial projects you should do 
your own verification
– Fossology can be useful here



Metadata in Yocto Project Recipes

• LICENSE
– SPDX License Identifiers used these days

• LIC_FILES_CHKSUM
– Catches changes in license



Metadata Advice

• Avoid `LICENSE = “CLOSED”`
– Give your proprietary license a name and include it
– CLOSED disables license checksum verification

• Avoid `SRCREV = “AUTOREV”` in releases
– Too easy to mismatch images and released source
– Rebuilding the image in several months may give a 

different result



Common Licenses

• LICENSE_PATH is a space separated list of 
directories to search for generic license text

• A layer can have its own directory for license text
– Extend LICENSE_PATH in layer.conf

• Use this instead of `CLOSED` or `Proprietary` 
licenses if possible



Unique Licenses

• NO_GENERIC_LICENSE allows license text to be 
copied from the package source
– Set `LICENSE = “blah”`
– Set `NO_GENERIC_LICENSE[blah] = “blah_license.txt”`

• Use this rather than ignoring warnings
– Makes it easier to audit and to capture license text 

properly later



Capturing License Text

• Copy or tarball `tmp/deploy/licenses`

• Should do this after a clean build

• May require some manual post-processing



Including License Text in an Image

• COPY_LIC_MANIFEST

• COPY_LIC_DIRS

• Places files into /usr/share/common-licenses



License Packages

• LICENSE_CREATE_PACKAGE

• Creates a package `${PN}-lic` for each recipe

• Places license text in /usr/share/licenses

• Provides an upgrade path for license text
– COPY_LIC_DIRS does not provide this



Capturing Source Code

• Two possible approaches here
– Shipping the downloads directory
– Using the archiver

• Archiver is more flexible
– Supports filtering by license and recipe type
– Configurable to fit your legal advice



Shipping the Downloads Directory

• Set `BB_GENERATE_MIRROR_TARBALLS = “1”`
– Enables the mirroring of git repositories

• Build an image
– Should be a clean build

• Copy or tarball the downloads directory
– You can exclude `.done` files and version control 

subdirectories



Shallow Mirror Tarballs

• By default, git mirror tarballs contain full history

• Set `BB_GIT_SHALLOW` and 
`BB_GENERATE_SHALLOW_TARBALLS` to enable

• Can save a lot of space in a mirror
– 7.5 GB -> 1 GB in one recent project



Using the Archiver

• Set `INHERIT += “archiver”` and ARCHIVER_MODE
– “original”
– “patched”
– “configured”

• Other options
– Original source -> patched source diff
– Recipe files



Copyleft Filtering

• COPYLEFT_LICENSE_INCLUDE
– Defaults to `GPL* LGPL* AGPL*`

• COPYLEFT_LICENSE_EXCLUDE
– Defaults to `CLOSED Proprietary`

• COPYLEFT_RECIPE_TYPES
– Defaults to target only
– Can add native, nativesdk, cross, crosssdk, cross-canadian



Providing Layers

• The best way to capture recipes and patches

• Publish as much of your layers as possible
– Either as tarballs or full git repositories
– Add them to the layer index if they’re open source (

https://layers.openembedded.org)

• Isolate proprietary recipes from open source recipes

https://layers.openembedded.org/


Local Configuration

• When providing layers, watch out for changes in 
local.conf

• Two possible solutions:
– Version control local.conf
– Capture local.conf as part of the build

• Also consider including bblayers.conf



SDK/ESDK Distribution

• An SDK/ESDK is just a different type of 
distributed image

• If using the archiver, make sure to extend 
COPYLEFT_RECIPE_TYPES



INCOMPATIBLE_LICENSE

• Allows recipes to be excluded by license
– Prevents accidental inclusion of unwanted code

• Applies to target packages only

• meta-gplv2 layer may be needed if excluding 
GPL 3.0 or later



License Flags

• Another method of excluding recipes by license class

• May be used to highlight non-copyright issues such as 
required patent licenses

• Set LICENSE_FLAGS_WHITELIST to enable flagged 
recipes



SPDX File Creation

• SPDX is a standard data exchange format for 
software manifests

• Supported in Yocto Project by meta-spdxscanner 
layer

• Uses DoSOCSv2 or a Fossology Server to 
perform analysis



Recent Improvements

• Per-image INCOMPATIBLE_LICENSE

• Devtool and recipetool have improved license 
handling

• Several license metadata fixes



WIP: Mirror Archiver

• The capture of Complete Corresponding Source 
must be testable

• The best test is a full rebuild
– Even better as support for reproducible builds improves

• Current archiver modes do not support this



WIP: Mirror Archiver (2)

• Supports split (directory per package) or combined 
(single directory) mirror creation

• Uses the fetcher in bitbake to capture SRC_URI items
– Like grabbing the downloads directory but supports copyleft 

filtering

• Allows further filtering of SRC_URI
– E.g. You can exclude `file://` URIs if you’re also providing layers



WIP: License Information Bundle

• Single license info artifact per image

• HTML format
– Two sections: Packages and common licenses
– License text in <pre> tags
– Suitable for use in documentation

• Can also be compressed and installed into an image



Comparison with Buildroot

• Buildroot has `make legal-info`
– Well documented
– Less configurable than Yocto Project but still pretty good
– Captures original sources, patches and license text

• Packages can be excluded by setting 
`<PKG>_REDISTRIBUTE = NO`



Comparison with OpenWRT

• Can’t find license compliance documentation for 
OpenWRT

• This needs improvement



Fossology

• Run license, copyright and export control scans

• Automated scanning process with support for manual 
correction

• Command line and Web UI interfaces

• A Linux Foundation project



OpenChain Project

• Improving license compliance across software supply 
chains

• Defines a specification and a training curriculum

• Conformance certification to
build trust

• A Linux Foundation project



Software Heritage

• Collects and preserves software source code

• Indexed at source file level and searchable by SHA1 hash

• Allows submission by web interface or API

• An Inria project
– French national research institute for the

digital sciences



Thank You!

Follow Up:

paul@betafive.co.uk
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