
License Compliance in 
Embedded Linux with the 
Yocto Project
Paul Barker, Beta Five Ltd



About Me

• Involved in Yocto Project since 2013

• Work across the whole embedded stack

• Managing Director & Principal Engineer 
@ Beta Five Ltd

• Contact: paul@betafive.co.uk
• Website: https://www.betafive.co.uk/

mailto:paul@betafive.co.uk
https://www.betafive.co.uk/


Disclaimer

• This is not legal advice

• Best practices are given based on my 
experience as a developer and an open source 
community member

• If in doubt, consult an appropriate lawyer



About This Talk
• Best practices and pitfalls to avoid

– Build system agnostic

• License Compliance in Yocto Project
– Available tools
– Ongoing and future work
– Comparisons with other projects

• Other relevant projects



Not Covered Here

• DRM/Tivo-isation concerns

• How to interpret licenses
– What do we need to provide in each case?



Why Care?

• Selling an embedded device typically involves 
distribution of open source software

• This carries the risk of legal action if not done 
properly

• Doing this right gives you standing in the 
community



Another Reason Why

• You should be retaining full sources anyway!

• Need to be able to rebuild old releases with 
minor changes
– For debugging
– To satisfy customer requests

• Sources often disappear from the internet



The Fundamentals

• Provide license text and notices (BSD, MIT, etc)
– On device?
– In documentation?
– On website?

• Provide Complete Corresponding Source (GPL)
– Published directly?
– Via an offer letter?



The Distributed Image

• This is the image that’s actually distributed

• For devices: What is on the device when it is 
shipped to a customer?

• For downloads: What is in the file a customer 
downloads?



Single Command Build

• Probably the most important practice

• Reduces human error in build/release process



Test Your Releases!

• Your build/release process is non trivial

• It needs tests!
– Check for expected artifacts
– Check inside tarballs as well
– Check you can rebuild from source releases

• Automate your tests



Use Your Build System

• Build the Distributed Image with Yocto Project, 
Buildroot, etc

• Avoid modifying this image in a post-build script
– Lose access to the tools in your build system
– Easy to break license compliance this way

• You can move, copy, compress, etc the image in a 
post-build script



Factory Test

• What happens on device between initial image 
programming and distribution?

• On-device package management at this stage 
complicates things
– Again, very easy to break license compliance

• Try to limit additional data added at this stage
– Configuration data, calibration data, etc is fine



Proprietary Components

• License compliance also means not releasing 
source for proprietary components
– You need some filtering

• Test for accidental release!

• May be useful to have a separate pure open 
source image



Source Patches

• Remember to include these with sources

• Watch out for hidden patches
– Use of sed or similar tools in recipes or build scripts

• Make sure your system records the patch order



Recipes and Build Scripts

• GPLv2 says to include “scripts used to control 
compilation and installation”

• This may include full Yocto Project layers & 
bitbake, full buildroot tree, etc as appropriate

• There are different interpretations here
– IANAL



Using Desktop/Server distros

• Just say no

• Difficult to audit license compliance

• Difficult to provide all required source code



Docker

• A Dockerfile is not the Complete Corresponding 
Source for an image

• You may not even know exactly what is installed 
in your base image (FROM statement)

• Watch out when using containers in Embedded 
Linux



Pre-compiled Toolchains

• E.g. ARM toolchain, Linaro toolchain
– Built around gcc, glibc, etc

• Libraries from this toolchain typically end up in 
the distributed image

• Remember to capture the source code for this
– May not be well automated



Language-Specific Package Managers

• E.g. NPM, Cargo, etc

• These are often trash on fire
– May not support offline compilation well
– May not offer an easy way to get the license text 

and/or correct source for dependencies

• You need to do your own research here



Other Insanities

• Watch out for unadvertised network access in 
Makefiles or other build scripts
– May download additional sources with different license 

conditions
– May use online tools during build process, breaking 

offline builds

• Every sin you can think of exists in a project 
Makefile somewhere



Metadata Bugs

• Licenses given in recipes may be incorrect or 
incomplete
– This does happen!

• Follow stable updates where possible

• For major commercial projects you should do 
your own verification
– Fossology can be useful here



Metadata in Yocto Project Recipes

• LICENSE
– SPDX License Identifiers used these days

• LIC_FILES_CHKSUM
– Catches changes in license



Metadata Advice

• Avoid `LICENSE = “CLOSED”`
– Give your proprietary license a name and include it
– CLOSED disables license checksum verification

• Avoid `SRCREV = “AUTOREV”` in releases
– Too easy to mismatch images and released source
– Rebuilding the image in several months may give a 

different result



Common Licenses

• LICENSE_PATH is a space separated list of 
directories to search for generic license text

• A layer can have its own directory for license text
– Extend LICENSE_PATH in layer.conf

• Use this instead of `CLOSED` or `Proprietary` 
licenses if possible



Unique Licenses

• NO_GENERIC_LICENSE allows license text to be 
copied from the package source
– Set `LICENSE = “blah”`
– Set `NO_GENERIC_LICENSE[blah] = “blah_license.txt”`

• Use this rather than ignoring warnings
– Makes it easier to audit and to capture license text 

properly later



Capturing License Text

• Copy or tarball `tmp/deploy/licenses`

• Should do this after a clean build

• May require some manual post-processing



Including License Text in an Image

• COPY_LIC_MANIFEST

• COPY_LIC_DIRS

• Places files into /usr/share/common-licenses



License Packages

• LICENSE_CREATE_PACKAGE

• Creates a package `${PN}-lic` for each recipe

• Places license text in /usr/share/licenses

• Provides an upgrade path for license text
– COPY_LIC_DIRS does not provide this



Capturing Source Code

• Two possible approaches here
– Shipping the downloads directory
– Using the archiver

• Archiver is more flexible
– Supports filtering by license and recipe type
– Configurable to fit your legal advice



Shipping the Downloads Directory

• Set `BB_GENERATE_MIRROR_TARBALLS = “1”`
– Enables the mirroring of git repositories

• Build an image
– Should be a clean build

• Copy or tarball the downloads directory
– You can exclude `.done` files and version control 

subdirectories



Shallow Mirror Tarballs

• By default, git mirror tarballs contain full history

• Set `BB_GIT_SHALLOW` and 
`BB_GENERATE_SHALLOW_TARBALLS` to enable

• Can save a lot of space in a mirror
– 7.5 GB -> 1 GB in one recent project



Using the Archiver

• Set `INHERIT += “archiver”` and ARCHIVER_MODE
– “original”
– “patched”
– “configured”

• Other options
– Original source -> patched source diff
– Recipe files



Copyleft Filtering

• COPYLEFT_LICENSE_INCLUDE
– Defaults to `GPL* LGPL* AGPL*`

• COPYLEFT_LICENSE_EXCLUDE
– Defaults to `CLOSED Proprietary`

• COPYLEFT_RECIPE_TYPES
– Defaults to target only
– Can add native, nativesdk, cross, crosssdk, cross-canadian



Providing Layers

• The best way to capture recipes and patches

• Publish as much of your layers as possible
– Either as tarballs or full git repositories
– Add them to the layer index if they’re open source (

https://layers.openembedded.org)

• Isolate proprietary recipes from open source recipes

https://layers.openembedded.org/


Local Configuration

• When providing layers, watch out for changes in 
local.conf

• Two possible solutions:
– Version control local.conf
– Capture local.conf as part of the build

• Also consider including bblayers.conf



SDK/ESDK Distribution

• An SDK/ESDK is just a different type of 
distributed image

• If using the archiver, make sure to extend 
COPYLEFT_RECIPE_TYPES



INCOMPATIBLE_LICENSE

• Allows recipes to be excluded by license
– Prevents accidental inclusion of unwanted code

• Applies to target packages only

• meta-gplv2 layer may be needed if excluding 
GPL 3.0 or later



License Flags

• Another method of excluding recipes by license class

• May be used to highlight non-copyright issues such as 
required patent licenses

• Set LICENSE_FLAGS_WHITELIST to enable flagged 
recipes



SPDX File Creation

• SPDX is a standard data exchange format for 
software manifests

• Supported in Yocto Project by meta-spdxscanner 
layer

• Uses DoSOCSv2 or a Fossology Server to 
perform analysis



Recent Improvements

• Per-image INCOMPATIBLE_LICENSE

• Devtool and recipetool have improved license 
handling

• Several license metadata fixes



WIP: Mirror Archiver

• The capture of Complete Corresponding Source 
must be testable

• The best test is a full rebuild
– Even better as support for reproducible builds improves

• Current archiver modes do not support this



WIP: Mirror Archiver (2)

• Supports split (directory per package) or combined 
(single directory) mirror creation

• Uses the fetcher in bitbake to capture SRC_URI items
– Like grabbing the downloads directory but supports copyleft 

filtering

• Allows further filtering of SRC_URI
– E.g. You can exclude `file://` URIs if you’re also providing layers



WIP: License Information Bundle

• Single license info artifact per image

• HTML format
– Two sections: Packages and common licenses
– License text in <pre> tags
– Suitable for use in documentation

• Can also be compressed and installed into an image



Comparison with Buildroot

• Buildroot has `make legal-info`
– Well documented
– Less configurable than Yocto Project but still pretty good
– Captures original sources, patches and license text

• Packages can be excluded by setting 
`<PKG>_REDISTRIBUTE = NO`



Comparison with OpenWRT

• Can’t find license compliance documentation for 
OpenWRT

• This needs improvement



Fossology

• Run license, copyright and export control scans

• Automated scanning process with support for manual 
correction

• Command line and Web UI interfaces

• A Linux Foundation project



OpenChain Project

• Improving license compliance across software supply 
chains

• Defines a specification and a training curriculum

• Conformance certification to
build trust

• A Linux Foundation project



Software Heritage

• Collects and preserves software source code

• Indexed at source file level and searchable by SHA1 hash

• Allows submission by web interface or API

• An Inria project
– French national research institute for the

digital sciences



Thank You!

Follow Up:

paul@betafive.co.uk


	Slide 1
	About Me
	Disclaimer
	About This Talk
	Not Covered Here
	Why Care?
	Another Reason Why
	The Fundamentals
	The Distributed Image
	Single Command Build
	Test Your Releases!
	Use Your Build System
	Factory Test
	Proprietary Components
	Source Patches
	Recipes and Build Scripts
	Using Desktop/Server distros
	Docker
	Pre-compiled Toolchains
	Language-Specific Package Managers
	Other Insanities
	Metadata Bugs
	Metadata in Yocto Project Recipes
	Metadata Advice
	Common Licenses
	Unique Licenses
	Capturing License Text
	Including License Text in an Image
	License Packages
	Capturing Source Code
	Shipping the Downloads Directory
	Shallow Mirror Tarballs
	Using the Archiver
	Copyleft Filtering
	Providing Layers
	Local Configuration
	SDK/ESDK Distribution
	INCOMPATIBLE_LICENSE
	License Flags
	SPDX File Creation
	Recent Improvements
	WIP: Mirror Archiver
	WIP: Mirror Archiver (2)
	WIP: License Information Bundle
	Comparison with Buildroot
	Comparison with OpenWRT
	Fossology
	OpenChain Project
	Software Heritage
	Slide 50

