What’s going on with SPI?
ELC, May 2014

s
Li ~Thy
un_sopandrodd: /data/ 1063 GO e
st T 4 vy |
pa “Late’ L &

.-

e '—F in




Overview

Hardware overview
Framework overview
Recent enhancements
Future plans

Linaro



What is SPI?

Simple bidirectional serial bus with four signals:

Master Out Slave In (MOSI)
Master In Slave Out (MISO)
Clock

Chip select

Little endian byte ordering for words

Linaro



What is SPI?

Comparable with 12C:

Four wires instead of two

Typically 1-2 orders of magnitude faster
Full duplex

Very simple implementation

Applications

Flash
Mixed signal ICs
DSPs

Linaro



Controller hardware

No support at all, using GPIOs
Very slow and inefficient
Commonly used for chip select

PlO based FIFOs

Less slow
Requires CPU access every word

DMA based FIFOs

Less work for CPU
Higher setup overhead
Faster for large blocks of data

Dual and quad mode
Extra data lines, mainly used with flash (v3.12)

Specialised flash controllers

Linaro



Controller hardware

No support at all, using GPIOs
Very slow and inefficient
Commonly used for chip select

PlO based FIFOs

Less slow
Requires CPU access every word

DMA based FIFOs

Less work for CPU
Higher setup overhead
Faster for large blocks of data

Dual and quad mode
Extra data lines, mainly used with flash (v3.12)

Specialised flash controllers

Linaro



Basic software stack

Originally contributed by David Brownell

Merged in 2.6.16 (released March 2006)
Largely unchanged until recently

Standard device model bus:

Controllers and devices
Device registration via machine driver/firmware

Linaro



Device interface

Simple message based interface for devices

List of transfers, for scatter/gather and mixed read/write
Some settings can change per transfer/message
Optionally asynchronous

Linaro



Device interface

struct spi transfer
const void*tx buf;
void *rx buf;
unsigned len;

} s

vold spl message 1nit(struct spli message *m);
vold spl message add tail (struct spil transfer *t,

struct spli message *m);

int spi async(struct spili device *spi, struct
Spl message *message);
int spi sync(struct spi device *spi,

struct spl message *message);

Linaro



Basic driver interface
Very basic:

int (*transfer) (struct spil device *spi,
struct spl message *mesqg);

Executes in atomic context!

Linaro



“Bitbang” driver framework
Not just for bitbanging:

int (*setup transfer) (struct spil device *spi,

struct spi transfer *t);
void (*chipselect) (struct spi device *spi, int is on);
int (*txrx bufs) (struct spi device *spi,

struct spi transfer *t);

Factors out logic to do with transfer list
Can even support DMA

Linaro



What’s missing?

No code reuse outside of bitbang
Lots of wheels of varying shapes
Good ideas need to be copied

Linaro



Standard parameter checking and handling

Many ways of specifying/validation same information

Selecting a transfer speed
Bits per word settings
Overriding these per transfer
Validating buffer sizes

Linaro



Message queue

int (*prepare transfer hardware) (struct spl master *m);
int (*transfer one message) (struct spli master *m,

struct spl message *m);
int (*unprepare transfer hardware) (struct spil master *m);

Factors out code
Standard synchronisation with suspend
Standard runtime PM implementation

Standard support for managing priority of pump

Contributed by Linus Walleij, merged in v3.4 (May 2012)

Linaro



Standard message parsing
Moves more logic from spi_bitbang into core:

int (*prepare message) (struct spl master *master,
struct spl message *message);
int (*unprepare message) (struct spli master *master,

struct spl message *message);

volid (*set cs) (struct spi device *spi, bool enable);
int (*transfer one) (struct spl master *master,
struct spi device *spi,
struct spi transfer *transfer);

Merged in v3.13

Linaro



Standard DMA mapping

Most drivers only handled some cases:

Buffers need to be mapped before DMA
Buffers may not be physically contiguous
vmalloc()ed addresses need different mapping

Drivers provide a callback to check for DMA:

bool (*can dma) (struct spl master *master,
struct spi device *spi,

struct spi transfer *xfer);

If true passed sg_lists instead of buffers

Linaro



Dual and quad modes

Extra data lines for higher speed
Capability set when registering device
Enabled per-transfer by device drivers

Contributed by Wang Yuhang, merged in v3.12

Linaro



What’s next?

Linaro



Standard GPIO chip select

Handling controller chip select
Standard way to set in DT

Linaro



Latency - spi_sync()

Device driver

Queue transfer

Walit...

Schedule

Return
_Linaro

SPI thread

Schedule
Start transfer
Wait...

Schedule
Wake driver

Hardware/IRQ

Start transfer
Walt...
Wake SPI



Latency - spi_async()

Device driver

Queue transfer

Walit...

Schedule

Return
_Linaro

SPI thread

Schedule
Start transfer
Wait...

Schedule
Wake driver
Start transfer

Hardware/IRQ

Start transfer
Walt...
Wake SPI

Start transfer



Latency - complete in IRQ

Device driver SPI thread

Queue transfer

Walit... Schedule
Start transfer
Wait...
Schedule Schedule
Return

Linaro

Hardware/IRQ

Start transfer
Walt...
Wake driver



Latency - start immediately

Device driver SPI thread Hardware/IRQ

Queue transfer Start transfer
Wait. . Wait...
Wake SPI
Wake driver
Schedule Start transfer
Return

Linaro



Latency

Do DMA mapping while prior transfer runs
Coalesce transfers and use hardware scatter/gather

Linaro



Pre-validated messages

Messages validated once and used several times
Saves iterating and checking

Allows drivers to keep buffers DMA mapped
Mainly for very high bandwidth applications

Work being done by Martin Sperl

Linaro



Fully DMA driven queues

Use DMA transfers to set chip select and parameters
Requires dmaengine and gpiolib enhancements
Extremely low CPU overhead, runs from interrupt

Work being done by Martin Sperl

Linaro



Summary

Simple bus, not so simple software

Much more active development recently

New hardware
More demanding performance requirements

Linaro



More about Linaro: http://www.linaro.org/about/
More about Linaro engineering: http://www.linaro.org/engineering/
How to join: http://www.linaro.org/about/how-to-join
Linaro members: www.linaro.org/members



http://www.linaro.org/about/
http://www.linaro.org/engineering/
http://www.linaro.org/about/how-to-join
http://www.linaro.org/members

