y

IIIIIIIIIIIIIIIII N E b dd d L-
QR oPEN SOURCE SUMMIT | @cg‘n;:,.e,fce o

““““““ Europe

Tracing resource-constrained embedded systems

using eBPF

Adrian Ratiu, Collabora Ltd

Agenda
* About me
* Embedded / loT woes
* How does eBPF fit in?
* Quick eBPF / BCC introduction, benefits
* Approaches to eBPF on embedded devices
* Trade-offs, specific projects pros/cons

* Ways forwards

About me. N

Psst..
. we're hiring!
| enjoy

...........

working in a company of awesome FOSS-oriented
people at Collabora

work with companies who “get it” when using FOSS

work to help companies “get it” and be successful

| also really enjoy

Taking systems apart and modifying them
Projects like OpenEmbedded/Yocto, Buildroot/OpenWRT

Always looking for new tech to improve development
and debugging of embedded devices

Learning about eBPF (just a user, not an expert)

A strong dislike of locked-down devices /
that lock owner usage without very good reasons

* “Smart” devices everywhere
* Increasingly powerful, complex, connected hardware
* Much more capable than default software installations allow

* Software complexity is also rising
(embedded systems now programmed in JavaScript)

* Obvious privacy, security and vendor lock-in concerns

Devices are more powerful & run modern SW stacks
yet they are still very hard (harder?) to

develop, debug, maintain and extend

. |

Embedded problems

Embedded problems

Why?

Increased SW/HW complexity
|
embedded-specific
resource constraints trade-offs

Enough memory to run just a specific pre-built workload
Cross-compiling and flashing/provisioning ;
Special “Embedded Linux” distributions /,
Boot time or RT deadline requirements
Ergonomics trade-offs, lack of HW ports B ®OX
Licensing requirements (no GPLv3...)

Weird HW combinations, countless HW revisions

Throw-away HW, planned obsolescence
Low quality Out-Of-Tree drivers, non-discoverable busses
<Add your own pet-peeve here>

Creative solutions against constraints

Debug symbol servers and remote GDB sessions
* Booting rootfs over the network

* Special protocols for diagnostics/log/trace

* Debug vs Release images, “developer mode”
Random hacks like not loading video drivers to preseve splash screen

Debug symbol servers and remote GDB sessions
Booting rootfs over the network

Special protocols for diagnostics/log/trace

Debug vs Release images, “developer mode”
Random hacks like not loading video drivers to preseve splash screen

Here comes eBPF

Embedded-eBPF sounds like a solution in
search of a problem...

Embedded-eBPF sounds like a solution in
search of a problem...

It kind of Is. W

“Embedded” engineers drooling over tools of “Cloud” engineers

Would like to have same system observability powers

Precedent: SMP now used on embedded devices

Explaining eBPF / BCC in a few slides!

BCC automates

VM bytecode
Kernel ° Userspace

Links at the end for better learning resources.

VM running bytecode in the Linux kernel

Bytecode loaded from userspace via bpf() syscall
Verified for safety, unsafe => syscall rejects bytecode

Bytecode compiled to native machine code
Native code inserted in execution paths
Event-driven programming

Native code runs and collects data

Data shared with userspace

User process User process

User process

sys_bpf() load \

sys_open()

4

\

eBPF Bytecode verifier

Validation
succesful

4

sys_open handler

JiT compiler
Bytecode -> native code

Attach/insert code
at instruction

How does userspace
produce that bytecode?

0: 79 12 60 00 00 0O 0O 0O r2 = *(ued4 *)(rl1 + 96)
1: 7b 2a 98 ff 00 00 00 00 *(ued *)(rl0 - 104) = r2
2: 79 17 70 00 00 00 00 0O r7 = *(ued *)(rl1 + 112)
3: 85 00 00 00 Oe 0O 0O 0O call 14

4: bf 06 00 00 0O 00 00 00 ro = ro

5: b7 09 00 00 00 00 0O 006 ra =0

6: 7b 9a cO ff 00 00 00 00 *(ued *)(rl0 - 64) = r9
7: bf 73 00 00 00 00 00 00 r3 =r7

8: 07 03 00 00 18 00 00 00 r3 += 24

9: bf al 00 00 00 00 0O 0O rl = rlo

11: 07 01 00 00 cO ff ff ff rl += -64

12: b7 02 00 00 08 00 00 00 r2 =8

13: 85 00 00 00 04 00 00 00 call 4

OCooNOULEA,WNREO

How does userspace
produce that bytecode?

79 12 60 00 0O OO 00 00
7b 2a 98 ff 00 00 00 00
79 17 70 00 00 00 00 006
85 00 00 00 Ge 00 00 00O
bf 06 00 00 00 O 00 0O
b7 09 00 00 00 OO 00 0O
7b 9a cO ff 00 00 00 00
bf 73 00 00 00 00 00 00
07 03 00 0O 18 0O 00 006
bf al 00 GO0 00 00 0O 0O

: 07 01 00 00 cO ff ff ff
: b7 02 00 00 08 60 00 00
; 85 00 00 00 04 00 00 00

Directly write it
byte by byte!

r2 = *(ué4 *)(rl + 96)
*(ubd4 *)(rl0 - 104) = r2

r7 = *(ued4 *)(rl + 112)
call 14

re = ro

ro =0

*(ued4 *)(rl1lo0 - 64) = r9
r3 = r7/

r3 += 24

rl = rl0

rl += -64

r2 =8

call 4

Clang can translate “restricted C” into eBPF bytecode
Much easier than assembling bytes like the 1960s

Still hard to write userspace interaction

Clang can translate “restricted C” into eBPF bytecode
Much easier than assembling bytes like the 1960s

Still hard to write userspace interaction

BCC: the BPF Compiler Colection

Framework to ease writing userspace eBPF programs
Abstracts Clang and sys_bpf() interaction

“restricted C” compiled & loaded in kernel on-the-fly
Provides Python, Lua and Go bindings

Provides production ready BCC-tools

BCC program

#!/usr/bin/env python
from bcc import BPF

CSI‘E — (I
#include <uapi/Llinux/ptrace.h>

int kprobe do sys open(struct pt regs *ctx)

{
char file name[256];
bpf probe read(&file name, sizeof(file name), PT REGS PARM1(ctx));
bpf trace printk(fmt, sizeof(fmt), file name);

}

b = BPF(text=csrc)

b.attach kprobe(event="do sys open", fn name="kprobe do sys open”)
while True:
time.sleep(1)

BCC program

#!/usr/bin/env python
from bcc import BPF

Compiled to bytecode

Loaded & runs in kernel
Collects data

Sends to userspace

ESI‘E — (I
#include <uapi/Llinux/ptrace.h>

int kprobe do sys open(struct pt regs *ctx)

{
char file name[256];
bpf probe read(&file name, sizeof(file name), PT REGS PARM1(ctx)
bpf trace printk(fmt, sizeof(fmt), file name);

}

Calls Clang to compile above code

Loads bytecode via bpf()
b = BPF(text=csrc) ﬂﬂ,5\\\\\\‘FZ;‘\\\\\\\\\\\\\t>

b.attach kprobe(event="do sys open", fn name="kprobe do sys open”)
while True:
time.sleep(1)

New tools developed for the book BPF Performance Tools: Linux System and Application Observability
by Brendan Gregg (Addison Wesley, 2019), which also covers prior BPF tools

filetop opensnoop c* java* node* php* javathreads gethostlatency
filelife fileslower statsnoop python* ruby* memleak
vfscount vfsstat syncsnoop mysqgld_gslower iStacks sslsniff
filet £ Eat ioprofile dbstat dbslower | -
v;s:izzemm:nf’il:s scread bashreadline threadsnoop
writesync P uca.lls uflow mysqld_clat pmlOCk pmheld
uobjnew ustat bashfunc syscount
cachestat cachetop uthreads ugc bashfunclat killsnoop
dcstat dcsnoop |] hell
) moumtenocs B
icstat Applications y eperm setuids
bufgrow i elfsnoop modsnoo I
W= Runtimes J/ p mo P Rea
4 execsnoop exitsnoop
siibataii System Libraries P/ PACEensec powe r
trace * * * é cpudist cpuwalk
aradist runglat runglen
fugccount \\ System Call Interface g rungslower CO m es
funcslower “‘VFS Socket cpuugclz;me]c: .
funclatency N f‘ OCKELS il ead o Wlth the
stackcount Scheduler‘ offcputime wakeuptime
profile File Systems / TCP/UDP , B o ekeline sofcizgs Bcc
f I~~~ offcpuhist threaded
btrfsdist Volume Manage P ; pidnss mlock mheld
btrfsslower g 9 Virtual - smpcalls workqg tOOIS
ext4dist extdslower [N)) Memory \
nfsslower nfsdist / ¢ Block Device, Net Device * slabratetop
xfsslower xfsdist A oomkill memleak
v zfsslower zfsdist / f //4 Device DriversT \ \ \ shmsnoop drsnoop
overlayfs f { \ kmem kpages numamove
mdflush T ieee802l1lscan| nettxlat _\ mmapsnoop brkstack
poiopeye sulty nvmelatency netsize ipecn faults ffaults
biotop biosnoop =] superping fmapfault hfaults
biolatency ASEd ol tcptop tcplife tcptracer qdisc-fq vmscan swapin
bitesize P tcpconnect tcpaccept N
seeksize s tcpconnlat tcpretrans hardirqgs
kstat sofamil q
biopattern :Zngtzcoioszﬁe% tcps:bnez_ :cpdrop criticalstat
blifis:earc:s AR S Sk tc :pnsbla :cs win Other: i
Legend: facie o R le toiedet capills llcstat | CPUs
: soconnlat solstbyte cpnag e rcprese hdets
prior tool blkthrot skbdrop skblife udpconnect xenhyper cpufreq I
new tool kvmexits

general / embedded-specific problems

multiple approaches

advantages / disadvantages

trade-offs, no silver bullet

Poking “outside” from the eBPF VM into rest of the system

* VM has generic 64 bit instructions/registers/pointers

Difficulty accessing 32 bit kernel/user data structures

VM is capable of 32 bit register subaddressing

Pointer arithmetic hacks can access 32bit offset data
Very fragile, not portable

Better solution: BPF Type Format adds type info to compiled eBPF
(part of C.O.R.E.)

Portable eBPF (Compile Once, Run Everywhere)
* Dream: run precompiled eBPF an any machine and expect it to work

* Slimmer version of BCC using BTF info, no Clang runtime compilation
(structure offsets built in BTF sections, macro identifiers - BPF variables)

Current runtime compilation uses version/config specific C headers
* Backwards, not forwards compatible
* Manually copying non-UAPI structures to “restricted C”
* Big variation of Linux kernel configs —» header structures

Kernel >= 5.2 can remove header filesystem dependency (kinda unrelated)

Work on-going, significant work merged for v5.4 and v5.5

No reusable standard library of eBPF / C code

Each program writes its own eBPF from scratch
(most of these code snippets are small)

Majority of tools built around Clang

GCC support is very new, sees little adoption
(ELF format dictated by whatever Clang produces / kernel accepts)

Portability (CORE) needed before standardization

Running eBPF programs requires root / CAP_SYS ADMIN

» eBPF code is assumed not malicious

« CAP_BPF will be added to restrict attack surface
* Unpriviliged eBPF unlikely to happen

Care must be taken when running eBPF code in production
 Don’t run arbitrary eBPF supplied by untrusted users

» Use additional security mechanisms like apparmor, verified boot

Awesome (as always) relevant LWN.net article and comments:
https://lwn.net/Articles/796328/

https://lwn.net/Articles/796328/

Using eBPF on RT systems can cause latency spikes

« EBPF unconditionally disables preemption

« Can add up to 500 us delay depending on workload
Currently PREEMPT _RT is made incompatible with eBPF via config

A proper solution should be possible in the future (TODO, WIP)

Awesome (as always) relevant LWN.net article and comments:
https://lwn.net/Articles/802884/

https://lwn.net/Articles/802884/

PRO: CON:
Lightest footprint possible Need to write from scartch
(few kb C program) Userspace sys bpf() interaction

Kernel provides helper libbpf Can get complex, hard to maintain
(useful starting point) No pre-existing community

Some examples provided by Linux kernel tree
in samples/bpf/

PRO: CON:

Vanilla upstream BCC Installs and links against Clang
Full framework capabilities Depends on Python (bcc-tools)
All BCC-tools available ~ 300 MB storage

Well tested, good performance

Will benefit from C.0O.R.E., but will still require python

Example project: Androdeb
(Requires > 2GB storage)

| | b +
| device kernel source -> LLVM | Embedded device

Host machine

Project abandoned due to high maintenance cost

PRO: CON:
100 kb bin + libc dependency Hard to maintain BCC<>BPFd interaction
Full framework capabilities Host + target + transport
All BCC-tools available architecture, not great security

Non-trivial latency

| ply source -+--> GCC -=--------------------=-> ply compiler <-> kernel |
| | | | | |
| device kernel source -+ | | script |
R i + o e e +
Developer machine Embedded device

’

ply ‘kprobe:i2c transfer { print(stack); }

PRO: CON:
50 kb bin + libc dependency Lack of kernel/user interaction control
High level, AWK-inspired DSL Lack of BCC-tools diversity
Self-contained Under heavy development

Easy to build & deploy Ply binary is not portable

PRO: CON:
~2 mb static-compiled eBPF loader BCC-tools need rewriting in Go :)
Full control over kernel/user interaction Not much documentation
Good coverage of BCC API bindings

e + ssh/nfs/http +------------------ - +
Restricted C -+--> LLVM -=-------mmommommmo- =-> eBPF ELF.o

I I
| device kernel source -+ | | loaded in kernel |
| I
| |

|
| | |
Developer machine Embedded device

Full execsnoop reimplementation:
https://github.com/iovisor/gobpf/blob/master/examples/bcc/execsnoop/execsnoop.go

https://github.com/iovisor/gobpf/blob/master/examples/bcc/execsnoop/execsnoop.go

Ways forward

* C.O.R.E. needs to be as succesful as possible
(Lighter BCC + portable eBPF)

Special-purpouse projects can continue shipping
precompiled eBPF (Approach 1)

Gobpf can eliminate the Python dependency (Rust?)
BPFd reached a dead end

Ply is standalone, will continue its awesomeness

eBPF on embedded is already quite useful today

Much work remaining
(RT reconciliation, eBPF libraries, GCC addition + ELF std)

Recommended learning resources:

* LWN.net eBPF articles https://lwn.net/
* Brendan Gregqg’s blog: http://www.brendangregg.com/blog/

* BPF Performance Tools: Linux System and Application
Observability, by Brendan Gregg, published by Addison
Wesley (2019)

* Collabora eBPF blog posts

https://www.collabora.com/news-and-blog/blog/2019/04/05/an-ebpf-
overview-part-1-introduction/

* Internet Search has wealth of information on eBPF

https://lwn.net/
http://www.brendangregg.com/blog/

Thank you!

Psst...

We're hiring!

......
""""""""

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

