
Kernel Boot-Time Optimization

Nicholas Mc Guire
Distributed & Embedded Systems Lab

Lanzhou Universtiy, P.R.China
dslab.lzu.edu.cn

Funded by Siemens CTSE2 under contract FMU654213



Schedule 1

Schedule

• Starting Point

• Problem statement

• Proposed Therapy

• Results and Conclusion

This study was funded by Siemens AG, CTSE2 Muenchen - we would

like to thank them for there support of free-software !

CELinux April 2006



Starting Point 2

Approach taken

• top down - source code analysis

• brute force - measure and hack

• strategic - analysis of the boot process concepts

This study was limited from start kernel to run init process

CELinux April 2006



Starting Point 3

top down approach

Tools for the top down approach

• KDB - Kernel Debugger (x86 only) - detailed code flow

• KFI - Kernel Function Instrumentation - function granular code

patch

• Kernel GCOV - for code coverage in kernel space - global code flow

overview

• UML - User Mode Linux testbeds - system scope

conducted on x86 (AMD 2GHz)

CELinux April 2006



Starting Point 4

brute force attack

Tools used for the brute force attack

• instrument printk - timestamping on all printk

• GPIO signal and scope - hard coded ”outb”

• hard-coded timestamping in code dumped via /proc/timestamps

• expect scripts (equivalent to instrument printk)

conducted on PPC405 (133MHz)

CELinux April 2006



Starting Point 5

Strategic approach tools

• Kernel GCOV - for branch optimization

• LTT - Linux Trace Toolkit - post init

• Oprofile - Profiling with hardware support - detection of low level

effects

Code size, code locality and related hardware artifacts need further

investigation.

CELinux April 2006



Problem statement 6

kernel boot-opt options

• resource stripping

• delayed allocation and initialization

• replace probing by config-options

• conceptual correction of the boot process

CELinux April 2006



Problem statement 7

known kernel related hot-spots

• resource initialization

• console (printk)

• calibration

• root fs mount

• mount of /proc

CELinux April 2006



Problem statement 8

One ”new” hot-spot

Primarily we were interested in applying the available optimizations, this

revealed a further essential boot time limit in the cache initialization.

• memory initialization - mem init

• cache setup - fs/dcache.c: dcache init,inode init,mnt init, etc.

• therapy -> initialize smaller caches - they will grow at runtime with

hardly detectable overhead

Linux is very sensitive to low memory situations, deferring memory load

where possible improves overall boot time behavior.

CELinux April 2006



Proposed Therapy 9

resource initialization

Most of the kernel boot time is obviously used for resource initialization

- these need to be fit to the embedded environment

• reduce number of ramdisks/console/floppies/etc.

• reduce number of supported devices to a configurable minimum

(do mounts)

• shrink initial cache sizes to a minimum (fs/dcache.c)

• reduce number of inodes on filesystems (i.e. ext2)

CELinux April 2006



Proposed Therapy 10

console (printk)

• printk level initialized to ”panic only”

• reduce the overall printk usage

• reduce the length of printk messages

CELinux April 2006



Proposed Therapy 11

calibration

Calibration does not really make much sense on every boot - but be ware

that you need to sanity check the system in some way if using

hard-coded values !

• lpj - preset Loops Per Jiffies

• use preset TSC quotient

• skip Update-In-Progress (UIP) wait (x86)

CELinux April 2006



Proposed Therapy 12

root-fs

Use a combination of filesystems to reduced the perception of the root-fs

mount times - defers read-write to the fates possible point - after

application launch.

• core in small cramfs - < 20ms mount time

• use small ramdisk for early read-write

• mount mini fo fore write access into initial ramdisk/pramfs

• mount jffs2 for general read-write access (as late as possible)

CELinux April 2006



Proposed Therapy 13

mounting /proc

Mounting proc is slow !

• reduce proc usage to a minimum

• put the interface into loadable modules (instead of fs/proc/)

• use sysctl (but not to extensively...)

• redesign init scripts so that proc is not needed at an early point

proc file initialization is very heavy weight - it would be nice if /proc

could be loaded as a module.

CELinux April 2006



Results 14

Kernel boot time optimization - Results

• ppc45 133MHz 32MB RAM 4 Flash - start kernel to prompt 188ms

• AMD K7 1GHz 256MB RAM 80GB HD - start kernel to prompt

84ms

• cache initialization times reduced by 8ms (AMD K7)

It is surprising that a 133MHz system exhibits only roughly twice the

boot time of a x86 PC system ! This indicates that there is still a

not-identified bottle-neck involved at least on the AMD.

CELinux April 2006



Results 15

Cache init optimization - Results

• mem initialization times reduced from 57ms to 8ms on AMD by

limiting memory availability

• mount times rise by 12 ms for ext2

• cache initialization times reduced by 8ms without memory

constraints

Currently it is not posible to add physical ram into the memory pool of

Linux after system initialization - modifications of Linux to allow this are

under development though.

CELinux April 2006



Conclusion 16

Conclusion

• Boot-time optimization related tools are available in a sufficient

quality to allow customization of the boot-process

• With fairly moderate changes to the kernel very reasonable kernel

boot times can be achieved.

• Be aware that most optimizations open the door to subtle boot-time

failure modes that need to be assessed during development.

CELinux April 2006



Further Work 17

On our TODO List

Small kernel boot times are nice - but consumer electronics are

interested in power-on-to-application-launch times, so the two main

topics we hope to continue work on are:

• Boot loader optimization

• User-Space initialization optimization

CELinux April 2006



Final Remark 18

Final Provocation

Linux is too fat

Is the unified ”one-fits-all” approach of mainstream Linux really suitable

for embedded systems and consumer electronics or is Linux not simply

getting too fat ?

CELinux April 2006



Invitation 19

RTLWS8 Invitation

8th Real Time Linux Workshop - October 12-15 2006

Realtime Linux Foundation Inc.

held at Lanzhou Univiersity, Lanzhou, P.R.China

http://www.realtimelinuxfoundation.org

CELinux April 2006


