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Schedule 1

Schedule

• Starting Point

• Problem statement

• Proposed Therapy

• Results and Conclusion

This study was funded by Siemens AG, CTSE2 Muenchen - we would

like to thank them for there support of free-software !
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Starting Point 2

Approach taken

• top down - source code analysis

• brute force - measure and hack

• strategic - analysis of the boot process concepts

This study was limited from start kernel to run init process
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Starting Point 3

top down approach

Tools for the top down approach

• KDB - Kernel Debugger (x86 only) - detailed code flow

• KFI - Kernel Function Instrumentation - function granular code

patch

• Kernel GCOV - for code coverage in kernel space - global code flow

overview

• UML - User Mode Linux testbeds - system scope

conducted on x86 (AMD 2GHz)
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Starting Point 4

brute force attack

Tools used for the brute force attack

• instrument printk - timestamping on all printk

• GPIO signal and scope - hard coded ”outb”

• hard-coded timestamping in code dumped via /proc/timestamps

• expect scripts (equivalent to instrument printk)

conducted on PPC405 (133MHz)
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Starting Point 5

Strategic approach tools

• Kernel GCOV - for branch optimization

• LTT - Linux Trace Toolkit - post init

• Oprofile - Profiling with hardware support - detection of low level

effects

Code size, code locality and related hardware artifacts need further

investigation.
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Problem statement 6

kernel boot-opt options

• resource stripping

• delayed allocation and initialization

• replace probing by config-options

• conceptual correction of the boot process
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Problem statement 7

known kernel related hot-spots

• resource initialization

• console (printk)

• calibration

• root fs mount

• mount of /proc
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Problem statement 8

One ”new” hot-spot

Primarily we were interested in applying the available optimizations, this

revealed a further essential boot time limit in the cache initialization.

• memory initialization - mem init

• cache setup - fs/dcache.c: dcache init,inode init,mnt init, etc.

• therapy -> initialize smaller caches - they will grow at runtime with

hardly detectable overhead

Linux is very sensitive to low memory situations, deferring memory load

where possible improves overall boot time behavior.
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Proposed Therapy 9

resource initialization

Most of the kernel boot time is obviously used for resource initialization

- these need to be fit to the embedded environment

• reduce number of ramdisks/console/floppies/etc.

• reduce number of supported devices to a configurable minimum

(do mounts)

• shrink initial cache sizes to a minimum (fs/dcache.c)

• reduce number of inodes on filesystems (i.e. ext2)
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Proposed Therapy 10

console (printk)

• printk level initialized to ”panic only”

• reduce the overall printk usage

• reduce the length of printk messages
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Proposed Therapy 11

calibration

Calibration does not really make much sense on every boot - but be ware

that you need to sanity check the system in some way if using

hard-coded values !

• lpj - preset Loops Per Jiffies

• use preset TSC quotient

• skip Update-In-Progress (UIP) wait (x86)
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Proposed Therapy 12

root-fs

Use a combination of filesystems to reduced the perception of the root-fs

mount times - defers read-write to the fates possible point - after

application launch.

• core in small cramfs - < 20ms mount time

• use small ramdisk for early read-write

• mount mini fo fore write access into initial ramdisk/pramfs

• mount jffs2 for general read-write access (as late as possible)
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Proposed Therapy 13

mounting /proc

Mounting proc is slow !

• reduce proc usage to a minimum

• put the interface into loadable modules (instead of fs/proc/)

• use sysctl (but not to extensively...)

• redesign init scripts so that proc is not needed at an early point

proc file initialization is very heavy weight - it would be nice if /proc

could be loaded as a module.
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Results 14

Kernel boot time optimization - Results

• ppc45 133MHz 32MB RAM 4 Flash - start kernel to prompt 188ms

• AMD K7 1GHz 256MB RAM 80GB HD - start kernel to prompt

84ms

• cache initialization times reduced by 8ms (AMD K7)

It is surprising that a 133MHz system exhibits only roughly twice the

boot time of a x86 PC system ! This indicates that there is still a

not-identified bottle-neck involved at least on the AMD.
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Results 15

Cache init optimization - Results

• mem initialization times reduced from 57ms to 8ms on AMD by

limiting memory availability

• mount times rise by 12 ms for ext2

• cache initialization times reduced by 8ms without memory

constraints

Currently it is not posible to add physical ram into the memory pool of

Linux after system initialization - modifications of Linux to allow this are

under development though.
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Conclusion 16

Conclusion

• Boot-time optimization related tools are available in a sufficient

quality to allow customization of the boot-process

• With fairly moderate changes to the kernel very reasonable kernel

boot times can be achieved.

• Be aware that most optimizations open the door to subtle boot-time

failure modes that need to be assessed during development.
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Further Work 17

On our TODO List

Small kernel boot times are nice - but consumer electronics are

interested in power-on-to-application-launch times, so the two main

topics we hope to continue work on are:

• Boot loader optimization

• User-Space initialization optimization
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Final Remark 18

Final Provocation

Linux is too fat

Is the unified ”one-fits-all” approach of mainstream Linux really suitable

for embedded systems and consumer electronics or is Linux not simply

getting too fat ?
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Invitation 19

RTLWS8 Invitation

8th Real Time Linux Workshop - October 12-15 2006

Realtime Linux Foundation Inc.

held at Lanzhou Univiersity, Lanzhou, P.R.China

http://www.realtimelinuxfoundation.org
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