
1

Fuzzing the Media Framework in Android

Alexandru Blanda
OTC Security QA

2

Agenda

Introduction

Fuzzing Media Content in Android

Data Generation

Fuzzing the Stagefright Framework

Logging & Triage Mechanisms

3

Introduction

Fuzzing

Å Form of black-box testing

Å Involves sending corrupt input to a software system and

monitoring for crashes

Å Purpose: find security-related problems or any other critical

defects that could lead to an undesirable behaviour of the system

4

Introduction

Fuzzing

 Possible targets:

ü Media Players

ü Document Viewers

ü Web Browsers

ü Antivirus products

ü Binary (ELF)

5

Introduction

Audio and video as attack vectors

Å Binary streams containing complex data

Å Large variety of audio and video players and associated media

codecs

Å User perception that media files are harmless

Å Media playback doesnôt require special permissions

6

Introduction

What to expect

Å Crashes (SIGSEGV, SIGFPE, SIGABRT, SIGILL)

Å Process hangs (synchronization issues, memory leaks, infinite

loops)

Å Denial of Service situations (device reboots, application crashes)

Å Buffer overflows, null-pointer dereference, integer overflows

7

Introduction

Fuzzing Media Content in Android

Data Generation

Fuzzing the Stagefright Framework

Logging & Triage Mechanisms

Agenda

8

Fuzzing Media Content in Android

Overview

Å Create corrupt but structurally valid media files

Å Direct them to the appropriate decoders in Android

Å Monitor the system for potential issues

Å Pass the issues through a triage mechanism

9

Fuzzing Media Content in Android

Steps in a fuzzing campaign

1. Identify type of input

2. Identify entry point in the system

3. Data generation

4. Execution phase (actual fuzzing process)

5. Monitor results (logging process)

6. Triage phase

10

Fuzzing Media Content in Android

Steps in a fuzzing campaign

1. Identify type of input - corrupt media files

2. Identify entry point in the system - Stagefright framework

3. Data generation - various fuzzing tools

4. Execution phase - Stagefright CLI

5. Monitor results - log buffer in Android

6. Triage phase - /data/tombstones

11

Introduction

Fuzzing Media Content in Android

Data generation

Fuzzing the Stagefright framework

Logging & Triage mechanisms

Agenda

12

Data generation

Tools

Å Basic Fuzzing Framework (BFF)

Å FuzzBox

Å Radamsa

Å American Fuzzy Lop (AFL)

Å Seed gathering

13

Data generation

Basic Fuzzing Framework (BFF)

ÅMutational fuzzing on software that consumes file input

Å Automatically generated GDB and Valgrind traces

Å Crash classification based on bug severity/exploitability

degree

Å Automated test case minimization, for inputs that produce a

crash

Å Based on a modified version of zzuf

14

Data generation

BFF for Android fuzzing

ÅGenerate test files on a temporary location the disk (rather

than directly in memory)

Å External script to save the files from the temporary location

Å Retrace generated test cases to their initial seed files

15

Data generation

FuzzBox

ÅMulti-codec media fuzzing tool, written in Python

Å Creates corrupt but structurally valid media files and launches

them in a player, while gathering GDB backtraces

ÅMore targeted than BFF (targets specific stream formats)

Å Supported filetypes: Ogg, FLAC, ASF(WMV, WMA), MP3,

MP4, Speex, WAV, AIFF

16

Data generation

FuzzBox for Android fuzzing

Å Several changes from the standard tool:

Å Only use the data generation functionality of the tool

Å Retrace all generated test files to their initial seed files

Å Automated tool usage

ÅMuch faster than BFF !

17

Data generation

Radamsa

ÅGeneral purpose fuzzer

Å Random, deterministic, model-based fuzzer

Å Collection of ~15 smaller model-based fuzzers

Å Control over mutation patterns and data generation sources

ÅMainly used only for generating test cases

Å Can be easily ported to run directly on Android (advantages?)

18

Data generation

Seed gathering

ÁPython mass downloader using

Google and Bing search engines

ÁThe LibAv samples collection:

more than 50 GB of valid and

corrupt media files

http ://samples.mplayerhq.hu/

Á-inurl:htm -inurl:html intitle :

 čindex ofč !éì0 + wget

http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/

19

Introduction

Fuzzing Media Content in Android

Data generation

Fuzzing the Stagefright framework

Logging & Triage mechanisms

Agenda

20

Fuzzing the Stagefright framework

The fuzzing infrastructure

21

Fuzzing the Stagefright framework

Overview of the testing process

Å Corrupted media input is created on a server using the data

generation tools

Å The server sends large sets of test cases to the local host

Å Each set of test files is automatically divided into separate

batches

Å Each device receives a batch of testing files in a distributed

manner and logs the results separately

22

Fuzzing the Stagefright framework

root@android :/ # stagefright - h

usage: stagefright

- h(elp)

- a(udio)

- n repetitions

- l(ist) components

- m max- number - of - frames - to - decode in each pass

- p(rofiles) dump decoder profiles supported

- t(humbnail) extract video thumbnail or album art

- s(oftware) prefer software codec

- r(hardware) force to use hardware codec

- o playback audio

- w(rite) filename (write to .mp4 file)

- x display a histogram of decoding times/fps (video only)

- S allocate buffers from a surface

- T allocate buffers from a surface texture

- d(ump) filename (raw stream data to a file)

- D(ump) filename (decoded PCM data to a file)

Stagefright command line interface

23

Introduction

Fuzzing Media Content in Android

Data generation

Fuzzing the Stagefright framework

Logging & Triage mechanisms

Agenda

24

Logging and Triage Mechanisms

Å Log every test case executed with Fatal priority

Å Save filtered logcat buffer for each campaign, for all devices

" adb shell log - p F - t sp_stagefright *** Filename :" + test_files [i]

 Logging process

25

0

20000

40000

60000

80000

100000

120000

140000

160000

Number of files

Total: ~1 million

Logging and Triage Mechanisms
 Initial results

26

0

500

1000

1500

2000

2500

3000

Size of files

Total: ~11.5 TB

Logging and Triage Mechanisms
 Initial results

27

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Number of crashes

Total: ~185000
crashes

Logging and Triage Mechanisms
 Initial results

28

Logging and Triage Mechanisms
 Triage phase

Å Problem: Automated fuzzing campaigns generating large

number of crashes (issues)

ü Manual sorting is not an option

Å Suitable testing scenarios: involve executing various test

cases on devices and monitoring for crashes

29

Logging and Triage Mechanisms
 Testing scenario

2 separate phases:

Å First run testing phase

ü Test cases are executed on the device

ü Logs are created during each test run

Å Triage phase

ü Generated logs are parsed to identify crashing test cases

ü Crashing test cases are resent to the device

ü Previously unseen crashes get stored in the unique issues pool

30

Logging and Triage Mechanisms
 Triage phase - implementation

Å Each test case that produces a crash generates an entry in

data/tombstones and data/system/dropbox

31

Logging and Triage Mechanisms
 Triage phase - implementation

1. Parse the logs and identify the test cases that caused a crash

2. Resend the files to the testing infrastructure

3. For each test file sent:

a. Grab the generated tombstone

b. Parse the tombstone and get the PC value

c. Check if the PC value has been previously encountered

d. Save the tombstone and the test case if the issue is new

32

Logging and Triage Mechanisms
 Triage phase - implementation

Å Diff between the folder that contains the unique issues, before

and after the triage process:

Common subdirectories: ./0015ae9f and old_issues /0015ae9f

Common subdirectories: ./00163774 and old_issues /00163774

Only in .: 001639cf

Only in .: 00167d90

Common subdirectories: ./00168304 and old_issues /00168304

Common subdirectories: ./00169d0f and old_issues /00169d0f

Common subdirectories: ./0016c8a7 and old_issues /0016c8a7

Only in .: 001a9211

Common subdirectories: ./00235a99 and old_issues /00235a99

33

0

1

2

3

4

5

6

7

8

Number of issues

Total: 35 issues

Logging and Triage Mechanisms
 Results after triage

34

Logging and Triage Mechanisms
 Results after triage

ÅMajority of issues reproduced in AOSP ï reported

directly to Google

Å7 issues considered security vulnerabilities, 3 included in

Android Security Bulletin from September 2014

Å Integer overflows in libstagefright:

ü CVE-2014-7915, CVE-2014-7916, CVE-2014-7917

35

Introduction

Fuzzing Media Content in Android

Data generation

Fuzzing the Stagefright framework

Logging & Triage mechanisms

Fuzzing Stagefright with AFL

Agenda

36

Fuzzing Stagefright with AFL
 The American Fuzzy Lop fuzzing tool

Å Instrumentation based fuzzing tool

Å Targeted binaries need to be compiled with afl-gcc (wrapper

over gcc)

Å Two fuzzing modes: dumb-mode, instrumented-mode

Å Instrumented mode detects changes to program control flow

to find new code paths

Å Detects both crashes and hangs and sorts out the unique

issues

37

Fuzzing Stagefright with AFL
 AFL on Android

Å Build instrumented binary like a regular Android module

Å Use environment variables (afl-gcc built as wrapper over

gcc toolchain from Android)

