Fuzzing the Media Framework in Android

Alexandru Blanda
OTC Security QA

ANDR#ID
@ IIIII SUMMIT

TTTTTTTTTTTTTTTT
Software



ANDR#ID
SUMMIT

Agenda

ntroduction

~uzzing Media Content in Android
Data Generation

~uzzing the Stagefright Framework

_ogging & Triage Mechanisms

]]]]]

OpenSource

TECHNOLOGY CENTER

Software

|
U



Introduction BUILDERS

Fuzzing

AForm of black-box testing

Alnvolves sending corrupt input to a software system and
monitoring for crashes

APurpose: find security-related problems or any other critical
defects that could lead to an undesirable behaviour of the system

intel' >3 6 OIFé:enSquEEe i

Software



Introduction BUILDERS

Fuzzing

Possible targets:

Media Players
Document Viewers
Web Browsers
Antivirus products
Binary (ELF)

BN e R = T e

Eu‘< y
L -

Software



Introduction BUILDERS

Audio and video as attack vectors

ABinary streams containing complex data

ALarge variety of audio and video players and associated media
codecs

AUser perception that media files are harmless

AMedi a playback doesndt require

(ited o OpenSource

Software



Introduction BUILDERS
What to expect

ACrashes (SIGSEGV, SIGFPE, SIGABRT, SIGILL)

AProcess hangs (synchronization issues, memory leaks, infinite
loops)

ADenial of Service situations (device reboots, application crashes)

ABuffer overflows, null-pointer dereference, integer overflows

o 3 Inte 6
(intel ( OpenSource
g .. ‘_u L "/)( .' _,'/ o, . TECHNOLOGY CENTER

Software



ANDR#ID
SUMMIT

Agenda

ntroduction

~uzzing MediaContent in Android
Data Generation

~uzzing the Stagefright Framework
_ogging & Triage Mechanisms

IIIII

OpenSource

TECHNOLOGY CENTER




Fuzzing Media Content in Android BUILDERS

Overview

A Create corrupt but structurally valid media files
A Direct them to the appropriate decoders in Android
A Monitor the system for potential issues

A Pass the issues through a triage mechanism

Software



Fuzzing Media Content in Android BUILDERS

Steps in a fuzzing campaign

|dentify type of input

ldentify entry point in the system

Data generation

Execution phase (actual fuzzing process)
Monitor results (logging process)

2 T I A

Triage phase

H * Intel 9
inte| OpenSource
xr (r"/(.’ 7 o TECHNOLOGY CENTER

Software



Fuzzing Media Content in Android BUILDERS

Steps in a fuzzing campaign

|dentify type of input :
ldentify entry point in the system -
Data generation :
Execution phase -
Monitor results -

A A

Triage phase -

o 3 Inte 10
(intel | OpenSource
g .. '-‘ .(“rl)( " ._'/ o - TECHNOLOGY CENTER

Software



ANDR#ID
SUMMIT

Agenda

ntroduction

~uzzing Media Content in Android
Data generation

~uzzing the Stagefright framework

_ogging & Triage mechanisms

IIIII

OpenSource

TECHNOLOGY CENTER




Data generation BUILDERS

Tools

A Basic Fuzzing Framework (BFF)
A FuzzBox

A Radamsa

A American Fuzzy Lop (AFL)

A

o 3 Inte 12
(intel - OpenSource
| .. '_, « "I)( " __'/ o - TECHNOLOGY CENTER

Software



Data generation BUILDERS

Basic Fuzzing Framework (BFF)

A Mutational fuzzing on software that consumes file input
A Automatically generated GDB and Valgrind traces

A Crash classification based on bug severity/exploitability
degree

A Automated test case minimization, for inputs that produce a
crash

A Based on a modified version of zzuf

i ; Intel
intel OpenSource
= ‘_. « J’ /)( : > ' 7 o - TECHNOLOGY CENTER

Software

13




Data generation BUILDERS
BFF for Android fuzzing

A Generate test files on a temporary location the disk (rather
than directly in memory)

A External script to save the files from the temporary location

A Retrace generated test cases to their initial seed files

intel' 1 OIF?RFSOLﬂrEEe -

Software



Data generation BUILDERS

FuzzBox

A Multi-codec media fuzzing tool, written in Python

A Creates corrupt but structurally valid media files and launches
them in a player, while gathering GDB backtraces

A More targeted than BFF (targets specific stream formats)

A Supported filetypes: Ogg, FLAC, ASF(WMV, WMA), MP3,
MP4, Speex, WAV, AlIFF

15

OpenSource

Software



Data generation BUILDERS

FuzzBox for Android fuzzing

A Several changes from the standard tool:
A Only use the data generation functionality of the tool
A Retrace all generated test files to their initial seed files
A Automated tool usage

A Much faster than BFF !

intel' 1 OIFéLenSOL{rEEe °

Software



Data generation BUILDERS

Radamsa

A General purpose fuzzer

A Random, deterministic, model-based fuzzer

A Collection of ~15 smaller model-based fuzzers

A Control over mutation patterns and data generation sources
A Mainly used only for generating test cases

A Can be easily ported to run directly on Android ( )

17

Opensource

Software



Data generation
Seed gathering

A Python mass downloader using
Google and Bing search engines

A The LibAv samples collection:
more than 50 GB of valid and
corrupt media files

http ://samples.mplayerhqg.hu/

Ve

A

Software

BUILDERS

./google-downloader.py —-help
Usage: google-downloader.py [options]

Options:
-h, —-help
-5 SEARCH, --search=SEARCH
keyword to SEARCH
-n NUM, --number=NUM Number of results to SEARCH
-d DOMAIN, --domain=DOMAIN

show this help message and exit

The url you want google.com or
google.co.in, all you
have to do is enter 'com' or
'co.in' etc.
-1 LANGUAGE, --language=LANGUAGE
Select your language (Default en)

OpenSource  *®

TECHNOLOGY CENTER



http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/

ANDR#ID
SUMMIT

Agenda

ntroduction
~uzzing Media Content in Android

Data generation
Fuzzing the Stagefright framework
Logging & Triage mechanisms

IIIII

OpenSource

TECHNOLOGY CENTER




Fuzzing the Stagefright framework BUILDERS

The fuzzing infrastructure

| >
COTTED
>
. -

Ty
]
% =]
=
©
e
hJ ) hJ )

[ Android devices J

. ® Inte
(intel ( OpenSource
g .. ‘_u L "/)( .' _,'/ o, . TECHNOLOGY CENTER

Software

20




Fuzzing the Stagefright framework BUILDERS

Overview of the testing process

A Corrupted media input is created on a server using the data
generation tools

A The server sends large sets of test cases to the local host

A Each set of test files is automatically divided into separate
batches

A Each device receives a batch of testing files in a distributed
manner and logs the results separately

21

OpenSource

Software



Fuzzing the Stagefright framework BUILDERS

Stagefright command line interface

root@andr0|d [ #  stagefright -h
. usage: stagefright
. -h(elp)
. - a( udio )

- n repetitions

. -1( ist ) components

- m max- number - of - frames -to - decode in each pass
. - p( rofiles ) dump decoder profiles supported

- t( humbnail ) extract video thumbnail or aloum art

. - s( oftware ) prefer software codec

. - r(hardware) force to use hardware codec

- 0 playback audio

. - w(rite) filename (write to .mp4 file)

. - x display a histogram of decoding times/fps (video only)
. - S allocate buffers from a surface

|- T allocate buffers from a surface texture

. - d(ump) filename (raw stream data to a file)

- D(ump) filename (decoded PCM data to a file)

Qs oy OpenSource 2

TECHNOLOGY CENTER
Software



ANDR#ID
SUMMIT

Agenda

ntroduction

~uzzing Media Content in Android
Data generation

~uzzing the Stagefright framework
_ogging & Triage mechanisms

IIIII

OpenSource

TECHNOLOGY CENTER




Logging and Triage Mechanisms BUILDERS
Logging process

A Log every test case executed with Fatal priority

' "adb shell log -pF -t sp_stagefright ***  Filename " + test files [1]

A Save filtered logcat buffer for each campaign, for all devices

01-13 04:19:15.462 F/Stagefright(29791): - sp_stagefright *** 610 - Filename:zzuf.27425.5zNP61.mkv
@1-13 04:19:18.466 F/Stagefright(29822): - sp_stagefright *** 611 - Filename:zzuf.18320.vKu92z.wmv
01-13 04:20:05.150 F/Stagefright(29844): - sp_stagefright *** 612 - Filename:zzuf.2948.ciFQUs.mp4
01-13 04:20:23.182 F/Stagefright(29859): - sp_stagefright *** 613 - Filename:zzuf.30915.z1C5XH.mov
01-13 04:20:54.285 F/Stagefright(29882): - sp_stagefright *** 614 - Filename:zzuf.1607.BkHjHj.mpg
01-13 04:20:55.010 F/Stagefright(29897): - sp stagefright *** 615 - Filename:zzuf.29755.v3EmT1.asf
01-13 04:21:10.134 F/libc (29902):|Fatal signal 11 (SIGSEGV)|at 0x56579489 (code=1), thread 29902
01-13 04:21:13.769 F/Stagefright(29917): - sp_stagefright *** gl16 - Filename:zzuf.19996.1iXjx7V.avi
@1-13 04:21:18.585 F/Stagefright(29934): - sp_stagefright *** 617 - Filename:zzuf.14298.DA0J0a.mts
01-13 04:21:20.505 F/Stagefright(29949): - sp_stagefright *** 618 - Filename:zzuf.12202.Cmg6émz.wmv
@1-13 04:21:23.165 F/Stagefright(29964): - sp_stagefright *** 619 - Filename:zzuf.2400.yA7uCg.wmv

Open80urce

TECHNOLOGY CENTER

(inteD) 24

Software



Logging and Triage Mechanisms BUILDERS

Initial results
Number of files
160000
140000
120000 -
100000 -
80000 —
60000 — mTotal: ~1 million
40000 -
20000 -
0 - — — — -
\{_'\ Vv > \{y ) \e@ A \j;b

R

1 y Intel 25
inte : OpenSource
19 1 r',.(’.’)('.’ o, TECHNOLOGY CENTER

Software



Logging and Triage Mechanisms BUILDERS

Initial results
Size of files
3000

2500 -

2000 —

1500 N

1000 ~ mTotal: ~11.5 TB

500 + -

O I I I I I I I ]
'\
‘1/ 'b \{‘b‘ o) \ljb A \lfb

& @"’ @"’ @"’ & @"’ & @"’

“ ) Intel 26
(intel . OpenSource
X .‘ .. [_, .f " I;( ’I > 7 . TECHNOLOGY CENTER

Software



Logging and Triage Mechanisms BUILDERS
Initial results

Number of crashes

45000
40000
35000
30000 -

25000 -

20000 ~ mTotal: ~185000
15000 —  crashes
10000 -

5000 -

O I I I I I I I ]

-
%%\&b‘%@\&%’\\&

& \$"’ R RCaCy

’ n Intel 27
(intel . OpenSource
i .‘ .. [_, .f ,'I)( ’I > 7 , TECHNOLOGY CENTER

Software



Logging and Triage Mechanisms BUILDERS
Triage phase

. Automated fuzzing campaigns generating large
number of crashes (issues)

U Manual sorting is not an option

A Suitable testing scenarios: involve executing various test
cases on devices and monitoring for crashes

intel' 1 OIFéLenSOL{rEEe ”

Software



Logging and Triage Mechanisms BUILDERS
Testing scenario

2 separate phases:

A First run testing phase
U Test cases are executed on the device
U Logs are created during each test run
A Triage phase
U Generated logs are parsed to identify crashing test cases
U Crashing test cases are resent to the device

U Previously unseen crashes get stored in the unique issues pool

(e ’ OpenSource

Software



Logging and Triage Mechanisms BUILDERS
Triage phase - implementation

A Each test case that produces a crash generates an entry in

and

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 06060060

Abort message: 'invalid address or address of corrupt block ©xf9873db8 passed to dlfree’
eax T9053000 ebx
esl 39075000 edi
¥Cs 000OMO23  xds
eip f718a048 ebp

backtrace:

pc 00012048
pc 00012dbe

Software

#0oo
#O1
#O2
#O3
#o4

#O5
#O6

#ov

pc
pc
pc

pc
pc

pc

oefbcfee
00Bezb5a
B01c24ch

001cl136a
B01clcf2

0033176

f722ff30 ecx 00000000 edx 39077000

39074e28

0000002b xes 0000002b xfs 0DOOOOOO xss 0OOOOOZD
fo075000 esp ffbBB60O flags 00010246

/system/1ib/1libc.so (sys_alloc.constprop.14+1224)

/system/1lib/1libc.so (dlmalloc+1822)

/system/1lib/1libc.so (malloc+30)

/system/1lib/1libstagefright.so (android::MediaBuffer::MediaBuffer(unsigned int)+74)
/system/1lib/1libstagefright.so (android::MediaBufferPool::acquire_buffer(int,
android: :MediaBuffer**)+267)

/system/1lib/1libstagefright.so (android::AsfExtractor::readPacket()+634)
/system/1lib/1libstagefright.so (android::ASFSource::read(android::MediaBuffer**,
android: :MediaSource: :ReadOptions const*)+194)

/system/1lib/1libstagefright.so (android::UMCAudioDecoder<UMC::CreateWMADecoder()=>::
read(android: :MediaBuffer**, android::MediaSource::ReadOptions const*)+3046)

Intel

OpenSource

TECHNOLOGY CENTER

30




Logging and Triage Mechanisms BUILDERS
Triage phase - implementation

1. Parse the logs and identify the test cases that caused a crash
2. Resend the files to the testing infrastructure
3. For each test file sent:

a. Grab the generated tombstone

b. Parse the tombstone and get the PC value

c. Checkif the PC value has been previously encountered

d. Save the tombstone and the test case if the issue is new

31

TECHNOLOGY CENTER

(inteD) 2o, OpenSource

Software



Logging and Triage Mechanisms

Triage phase - impl

A Diff between the folder that contains the unique issues, before

ementation

and after the triage process:

BUILDERS

. Common subdirectories: .

/0015ae9f and
/00163774 and

. Common subdirectories:
 Only in .: 001639cf

- Only in .: 00167d90

. Common subdirectories:
. Common subdirectories:
. Common subdirectories:

/00168304 and
./00169d0Of and
./0016c8a7 and

' Only in.:001a9211

. Common subdirectories:

./00235a99 and

old_issues
old_issues

old_issues
old_issues
old_issues

old_issues

/0015ae9f
/00163774

/00168304
/00169d0f
/0016c8a7

/00235a99

_______________________________________________________________________________________________________________________________________________________________________________________________

Software

TRz

32




Logging and Triage Mechanisms BUILDERS
Results after triage

Number of issues

-— Total: 35 issues

O P N W M Ul O N ®
|
|

N
M m%\&b‘@\gb\{:\@

IR R G NG

“ ) Intel 33
(intel . OpenSource
X .‘ .. [_, .f " I;( ’I > 7 . TECHNOLOGY CENTER

Software



Logging and Triage Mechanisms BUILDERS
Results after triage

A Majority of issues reproduced in AOSP i reported
directly to Google

A 7 issues considered security vulnerabilities, 3 included in
Android Security Bulletin from September 2014

A Integer overflows in libstagefright:

U CVE-2014-7915, CVE-2014-7916, CVE-2014-7917

i ; Intel 34
intel OpenSource
= ‘_. « J’ /)( : > ' 7 o - TECHNOLOGY CENTER

Software



ANDR#ID
SUMMIT

Agenda

Introduction

Fuzzing Media Content in Android
Data generation

Fuzzing the Stagefright framework
Logging & Triage mechanisms

Fuzzing Stagefright with AFL

<> =
Software —_— =
P — -

OpenSource

TECHNOLOGY CENTER




Fuzzing Stagefright with AFL BUILDERS

The American Fuzzy Lop fuzzing tool

A Instrumentation based fuzzing tool

A Targeted binaries need to be compiled with afl-gcc (wrapper
over gcce)

A Two fuzzing modes: dumb-mode, instrumented-mode

A Instrumented mode detects changes to program control flow
to find new code paths

A Detects both crashes and hangs and sorts out the unique
ISsues

i ; Intel
intel OpenSource
= ‘_. « J’ /)( : > ' 7 o - TECHNOLOGY CENTER

Software

36




Fuzzing Stagefright with AFL BUILDERS
AFL on Android

A Build instrumented binary like a regular Android module
A Use environment variables (afl-gcc built as wrapper over

gcc toolchain from Android)

o 3 Inte 37
(intel ( OpenSource
g .. ‘_u L "/)( .' _,'/ o, . TECHNOLOGY CENTER

Software



