
©Synopsys 2012 1

ARC Linux
“From a tumbling Toddler to a

graduating Teen”

ELC-Europe

Barcelona, November 2012

Vineet Gupta

©Synopsys 2012 2

Agenda

● Introduction
● ARC Architecture
● ARCompact ISA
● Linux Evolution

● Early challenges
● Optimizations
● Community

©Synopsys 2012 3

ARC Architecture

● 32bit RISC load/store Architecture with deep register file (32)

● Cores: ARC600 (MMU-less), ARC700 (MMU)

● MMU: Software Managed TLB, Address Space ID (ASID)

● Caches: L1: Non-snooping, VIPT

● Two interrupt priorities provided by “in-core” IRQ Controller

● Configurability: at the click of a button - literally !

● Custom Instructions to extend the ISA
● Configurable Cache / MMU Geometry, Page Size
● Gates vs. Performance (e.g. Small or Fast Multiplier)

● Highly efficient with regards to performance/area and
power/area

©Synopsys 2012 4

ARCompact ISA

● ISA allow free intermixing of short (2 byte) and long (4 byte)
instructions and each of these in turn can take a 4 byte LIMM
(Long immediate).

● Unaligned Data access not supported.

● Most instructions can be conditionally executed (e.g. ADD.neADD.ne)

● Dedicated Call return register (BLINKBLINK)

● LP instructions for Hardware Loops (a.k.a. Zero Overhead Zero Overhead
LoopsLoops)

● LP_START, LP_END, LP_COUNT registers
● Avoids need for software to decrement-counter and compare-and-

branch every loop iteration

©Synopsys 2012 5

Toddler Days: Tumbling and Trying
● 2.6.19 ('08)

● Arbitrary tasks segfaulted when system stressed
● Gdb Breakpoints (user-code) worked semi-randomly
● Support for MMU v2 - First tapeout of ARC700 for Linux Host
● Cache “current” task pointer in register optimization
● OProfile support
● Kernel Stack Tracing (Dwarf2 unwinder based)
● Low level Event logging (poor man's LTT)

● 2.6.26 ('09)
● High Resolution Timers / Tickless Idle / RT Signals
● File system corrupted due to Cache flush loop overflow
● Kernel panic on customer board with A/v drivers as modules

©Synopsys 2012 6

Teen: Growing and Maturing
● 2.6.30 ('10)

● OProfile “opcontrol” shell script randomly terminated
● Serious Optimizations
● Strace Port
● QT 4.5.2 Port
● Support for Extension Instruction to do Endian Swap
● LTP Open Posix Supported

● 2.6.35 ('11)
● Kprobes Support
● Support for ARC700 4.10 (770 core)

– MMU v3 / SASID / LLOCK-SCOND instructions

©Synopsys 2012 7

Agenda

● Introduction

● Early challenges
● Optimizations
● Community

©Synopsys 2012 8

Filesystem Corruption with DMA

● When IDE Disk Driver switched to DMA, the on-disk
ext2 filesystem started showing corruption

● ARC Caches are non-snooping / non-coherent
● DMA From-Device requires Invalidating the D$ lines
● DMA To-Device requires Flushing the D$ lines

● Off-by-one error in the D$ line invalidate loop
● Cache flush callers expect inclusive @start but exclusive @end

void inv_dcache_range(unsigned long start, unsigned long end)
{
 ...
 /* Throw away the Dcache lines */
- while (end >= start) {
+ while (end > start) {
 write_new_aux_reg(ARC_REG_DC_IVDL, start);
 start = start + ARC_DCACHE_LINE_LEN;
 }

©Synopsys 2012 9

Task Randomly Segfaulting ...

● With 3 telnet sessions, each with a shell script infinite looping on ls,
sometimes a telnet task segfaulted

● Low Level Event Logger implemented to trace critical Machine
Events [IRQs, TLB Miss Exceptions, syscalls] as well as key
kernel events: e.g. do_signal, __switch_to()

● Analyzed the events backwards - from do_signal() and in error
case, it was taking 1 fewer D-TLB exception right before hitting the
signal

● Background
● MMU exclusively deals with TLB entries (Page Tables are purely for

kernel, to help manage the TLB entries)

● Page faults are called TLB Miss Exceptions on ARC (separate for
Instruction-Fetch and Data load/store)

● So task was somehow using an existing D-TLB entry and some
data in that page mapped to a NULL pointer

©Synopsys 2012 10

Task Randomly Segfaulting (cont)
● TLB entries have an 8-bit ASID to allow entries with same vaddr to

coexist (corresponding to different tasks) - avoids flush every Task
switch

● A new task (fork/execve) is assigned an ASID and when it is
schedule()ed, MMU PID Reg is set with task's ASID

● ASID allocation using a simple wrapping atomic counter - a new
request gets counter++

● When ASID rolls over, kernel flushes the TLB and restarts the
allocation cycle - task ASID (re)assignments however remain
unchanged as that is done “lazily”

● Algorithm by default allows for ASID “stealing”ASID “stealing”: if ASID counter is at
“N”, a new request gives “N+1” even if it is already allocated

● Unless rest of algorithm is carefully written, the 2 prev points
combined can cause a ASID reuse - meaning “stale” TLB entries to
be used by a task

©Synopsys 2012 11

Task Randomly Segfaulting (cont2)

● Solution was to always keep task->asid behind @ASID_counter

● So in step #2 above,Task-A would be forced to refresh it's ASID, give up
125 and get 31

● In general, for @ASID_counter = “N”, TLB entries would never pre-exist for
“N+1”, thus ASID stealing won't cause stale TLB entries reuse.

ASID Allocation Cycle #1
- @ASID_counter is at 124
-Task A starts, ASID 125 assignedTask A

After more allocations, @ASID_counter becomes 255 and wraps around to zero. Process-A->ASID remains 125 because of
lazy re-allocation algorithm

ASID Allocation Cycle #2
- Task A runs, TLB entries
 created with ASID 125

ASID Allocation Cycle #2
- @ASID_counter is at 124
-Task B starts,kernel assigns
 125 which causes BUG

0 255124

30

124

ASID counter

2550

0 255125 for A and B

125 for A

125 for A

Task A

Task ATask B

static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk)
{
- if (next->context.asid == NO_ASID)
+ if (next->context.asid > asid_cache)

get_new_mmu_context(next);

©Synopsys 2012 12

How we debugged these !
● Some of the issues took many weeks
● Tools

● A very accurate Instruction Set Simulator (ISS) with Instruction Trace

● A JTAG Debugger allowing to peek/poke almost any architectural CPU
element (TLB, Cache, memory)

● Wrote low level event capture (poor man's LTT)
● And pouring through 100's of events

● Some luck and lots of patience
● In one case, a crash caused CPU to jump to a random location

containing zeros (encoding for Branch-to-self instruction). Thus it
would just spin-loop. The JTAG debugger was still connected. For 2
days we analysed that dead-but-live system - and eventually found that
interrupts had not been disabled in a critical TLB programming section
of code

©Synopsys 2012 13

Agenda
● Introduction
● Early challenges
● Optimizations

● Software
– Kernel
– uClibc

● Tools assisted
● Hardware assisted

● Community

©Synopsys 2012 14

Now that we can walk, Run !

● Not all Bugs are bad !
● Most of the early “opportunities” for optimization came straight

out of staring at objdumps while debugging - without any
“directed” profiling

● Not afraid to ask “stupid” questions

● Marketing Benchmarking Requests helped the cause
too

● LMBench was/is standard measuring stick and for a hacker, the
excitement of beating a competitor in a benchmark is lesser
only to a few other things in life, mentionable in a public
forum :-)

©Synopsys 2012 15

uaccess optimization
● Bootup init.d/rcS makes several mount calls for pseudo/real filesystems

(e.g. proc/sysfs/devpts/nfs-shares..)
● We saw excessive number of D-TLB Miss Exceptions during boot, due

to mount syscall copying the “strings” from userspace

● How __get_user() works

sys_mount() => copy_mount_options() => exact_copy_from_user()

 while (n) { /* 8192 */
 if (__get_user(c, f)) { --> this loop continued for 8k iterations
 memset(); break;
 }
 f++; n--;

 __asm__ __volatile__ (
 "1: ld %1, [%2] \n" ACTUAL COPY OPERATION

 " mov %0, 0 \n" (default success case sets r0 = 0)
 "2: nop \n"

 " .section .fixup, \"ax\" \n"
 “3: mov %0, %3 \n” FIXUP code
 " j 2b \n" (error case, sets r0 = -EFAULT)
 " .previous \n"

 " .section __ex_table,\"a\"\n" EXCEPTION Table Entry
 " .word 1b, 3b \n" (links Copy code to Fixup code)
 " .previous \n"

©Synopsys 2012 16

uaccess: What Joy can a Half line diff bring
● The misplaced asm label for fixup caused .ex_table entry to NOT point

to actual fixup code
● This caused __get_user() to NOT return -EFAULT when early end of

page was encountered, continuing for 8k iterations.

● After fix, total boot time D-TLB Exceptions went down by 2 orders of
magnitude: from 87,000 to 650 !from 87,000 to 650 !

©Synopsys 2012 17

Signal Handling Optimization

● A userspace signal handler has to return to kernel to
restore original user context using SIGRETURN syscall

● Handler return “prep”ed by setting call return register to a
userspace asm stub which invokes sigreturn syscall

● In Orig Kernel code the asm stub was “synthesized”
● “inject”ed opcodes for sigreturn trap on user stack
● Code modification needed I$ + D$ line flush as well as Page

Execute permission wiggle

● New Design
● A “real” asm stub in uClibc,

passed by sigaction() to kernel
via SA_RESTORER

● No need to muck with user stack at all

.globl __rt_sa_restorer;

.type __rt_sa_restorer, @function

.align 4;
__rt_sa_restorer:
 mov r8, __NR_rt_sigreturn
 swi

©Synopsys 2012 18

Signal Handling Optimization (cont)

● Also changed to “batch” copying of user mode registers
(vs. itemized copy)

 -->

● LMBench lat_sig {catch,
prot-v} improved significantly

static int setup_sigframe()
 {
 err = __put_user(r->r0, &sf->uc.mc.r0);
 err = __put_user(r->r0, &sf->uc.mc.r1);
....
 err |= __put_user(r->r12, &sf->uc.mc.r12);

static int setup_sigframe()
 {
 unsigned long *src = &(r->bta);
 unsigned long *dst = &(sf->uc.mc.bta);
 unsigned int sz = &(r->r0) - &(r->bta) + 4;

 err = __copy_to_user(dst, src, sz);

©Synopsys 2012 19

8 bits 11 bits 13 bits

PGD

0

255

PTE

0

2047

Page Frame
(8k)

Page Table Walking Address Split
● TLB Exception Handler walks the Page Tables to find the

Virtual-to-Physical mapping for creating the TLB Entry
● ARC Linux implements a 2-tier paging: PGD-Tbl and PTE-Tbl
● Indexing into each level requires vaddr to be split: originally

8:11:13 which governs the paging geometry
● PGD-Tbl 256 entries (1KB)

● PTE-Tbl 2K entries (8KB)

● Given page sized allocations for all tables, 7k wasted per PGD-
Tbl per process

©Synopsys 2012 20

Page Table Walking Addr Split (cont)
● When a vaddr is faulted, needing a new PTE-Tbl, the entire

Table has to be memzero()-ed
● With 2k entries, as many 'ST 0, [mem]' instructions needed

● A 2k entries deep PTE-Tbl covers 16M of vaddr space which is too
coarse/large of granularity for vaddr space allocation

● Switched to 11:8:13
● PTE-Tbl now spans 2M of address space, still a reasonable granularity

● A new PTE-Tbl only needs 256 instructions to initialize

● PGD-Tbl fits w/o memory waste

● A few more minor optimizations
● pgtable_t made ulong instead of struct page *

● Allowed Inline memset instead of clear_page()

● lat_mmap (16k) improved by ~10%~10%

©Synopsys 2012 21

uClibc syscall wrappers
● Simple asm stubs which load syscall NR and args in ABI

designated registers before invoking TRAP into kernel
and in return possibly set “errno”

● At heart is one “C” macro with inline asm
● Uses Recursive macro expansion

● Existing version generated lot of useless insn
● Rewrote INLINE_SYSCALL()

● A critical reg var r0 missing
● errno set out-of-line
● -fomit-frame-pointer

● Total uClibc shrunk by ~5%, ~5%, while all
syscall wrappers combined by ~13%~13%

OLD
00d6b0
<__libc_nanosleep>:
 d6b0: push_s blink
 d6b2: st.a r13,[sp,-8]
 d6b6: st.a fp,[sp,-4]
 d6ba: mov fp,sp
 d6be: mov_s r3,r0
 d6c0: mov r8,162
 d6c4: mov r0,r3
 d6c8: swi
 d6cc: nop
 d6d0: nop
 d6d4: mov r13,r0
 d6d8: cmp r13,-126
 d6dc: bls.d d6f2
 d6e0: mov.ls r0,r13
 d6e4: bl ada4
 d6e8: rsub r2,r13,0
 d6ec: st_s r2,[r0,0]
 d6ee: mov r0,-1
 d6f2: ld.ab fp,[sp,4]
 d6f6: ld.as blink,[sp,2]
 d6fa: ld_s r13,[sp,0]
 d6fc: j_s.d [blink]
 d6fe: add sp,sp,12
 d702: nop_s

NEW
00c244 <__libc_nanosleep>:
 c244: mov r8,162
 c248: swi
 c24c: brge r0,0,c25c
 c250: st.a blink,[sp,-4]
 c254: bl ad5c
 c258: ld.ab blink,[sp,4]
 c25c: j_s [blink]
 c25e: nop_s

©Synopsys 2012 22

Agenda
● ARC Architecture
● Early challenges
● Optimizations

● Software
● Tools assisted

– gcc toggles/peephole
– New gcc features

● Hardware assisted
● Community

©Synopsys 2012 23

Making Toolchain work for us
● -fomit-frame-pointer made default across the board as it

caused needless stack operations (w/o helping with
debugging)

● Kernel built with -O3 improved most LMBench numbers by
~8%

● By default GP reg not picked by Register Allocator as it is
typically reserved for small data relocations, which kernel
can't use. So re-purposed it as a GPR (-fcall-used-gp)

● Peephole for 1-bit multiply
● page_add_file_ramp() accesses a 2 entry array nodes_zone[]
● Indexing requires a multiply of constant with 1 bit number
● Gcc was generating MPY instructions - which could instead be

done with a TST + conditional ADD

©Synopsys 2012 24

Gcc: builtin for alignment check
● Unaligned load/store not supported in Hardware, needing

additional code (Branches) to check for alignment first

● Branches bad for CPU pipelines: Mispredicts / I-Cache misses...

● If data start/end are aligned, tight inline loops could be generated
specially given ARC Zero Delay Loop (ZDL) instructions

● e.g. memzero function call requires 2 instructions to setup args, and 1
instruction for the Branch - doable inline in 3 instructions with ZDL

● New __builtin_arc_aligned()__builtin_arc_aligned() compile time detects alignment of data
types: allowed 55% of kernel memset calls (292 out of 529) to be
inlined

● ~3% performance gains (pending analysis and not yet applied to
things like memcpy / copy_(to|from)_user

#define memzero(dst, sz) \
({ \
 if (__builtin_constant_p((sz)) && !((sz)%4) && __builtin_arc_aligned(dst, 4)) { \
 tail_n_head_aligned_memzero(dst, sz/4); // tight inline loop \
 } else { \
 extern void * memzero(void *, __kernel_size_t); \
 memzero(dst, sz); // fall back to function call \
 } \
 dst; \
})

©Synopsys 2012 25

Agenda
● ARC Architecture
● Early challenges
● Optimizations

● Software
● Tools assisted
● Hardware assisted

– New Instructions
– Architectural Changes

● Community

©Synopsys 2012 26

Atomic Read-Modify-Write
● As typical of a RISC architecture, ARC700 originally did not

support atomic read-modify-write
● However kernel is littered with atomic bitops: set_bit() / ... and

ALU ops: atomic_add() / …
● Linux originally disabled interrupts around such code and SMP

model resorted to using additional global hashed spin lock

● ARC700 4.10 introduced LLOCK/SCOND instructions
● A load from memory “marks” a hardware critical section, and

the paired store only commits if no IRQs were taken in
between. If failed, code has to retry !

● All atomic operations converted to these instructions, kernel
code reduced by ~2%

©Synopsys 2012 27

MMU Shared Address Spaces (SASID)
● Shared library code despite being “shared” at Page level, still

needs per-process TLB entries (due to ASID)
● e.g. System with 10 processes and 10 code pages in libc will

require 100 TLB entries for libc code alone

● While ASID allows segregation of TLB entries (per task), a
way to aggregate TLB entries (per block of code/data) is
needed

● Each sharable block of code is assigned a unique SASID (e.g.
libc 1, libm 2, libpthread 3...)

● A new type of TLB entry introduced in MMU which uses a SASID
to tag TLB entries

● Task “subscribes” to group of SASID(s): e.g. Per above, 0x5
gives it access to libc / libpthread. Currently 32 SASIDs possible

● Only requirement from software (loader/kernel) is to map shared
blocks at exact same vaddr across processes

©Synopsys 2012 28

MMU Shared Address Spaces (cont)

● Why we gain
● New task mapping existing mapped lib is essentially a “free

loader”. It reuses the existing TLB entry w/o CPU faulting.
Additionally complete Linux page fault handling code is short
circuited.

● For fork, parent need to Copy-on-write it's entire address space.
W/o SASID, all TLB entires (code/data) need to be invalidated.
With SASID, majority of code mappings remain valid.

©Synopsys 2012 29

Agenda
● ARC Architecture
● Early challenges
● Optimizations
● Community

● Upstreaming
● Possible ABI Fallout

©Synopsys 2012 30

Upstreaming
● As Linux matured (stability/performance/customer-base),

attention focused towards community contribution
● Customers demand more closer following of upstream revisions
● Miss the automatic bucket fixes which get applied to all arches (e.g.

Recent signal handling updates / UAPI split)
● geek factor of your code being in kernel.org and sharing space with

smarter people
● It's simply the right thing to do!

● Homework
● Pretending like a new port despite being old is a serious handicap

● Lindent / checkpatch / sparse / remove C99 comments

● Refactored for cleaner seperation of platform / drivers / core ARCH code.

● Flattened the existing code in 3.2 port (500+ patches since 2.6.30) and
then recarved into logical patches (headers, IRQ, syscall...)

● Read Documentation/Submitting*

©Synopsys 2012 31

Upstreaming (cont)
● Still lot of anxiety in letting “the world” loose on code which had

never faced “critical” public review
● Contacted some of the key kernel developers: Arnd Bergmann, Paul

Mundt, GKH all of whom offered welcome advice
● Arnd suggested restructuring the patches into 2 series

– #1: Basic features to get a building/running kernel with console
– #2: Any additional features added incrementally: ptrace, SMP, perf,....

● Follow the last merged architecture to know common mistakes / current
“trends”

– Same image across platforms

– Reuse the device tree bindings...

● Don't be afraid - it's your code not you that's criticized !

● Be prepared to fix / refix.

©Synopsys 2012 32

Generic Headers and userspace ABI
● With recent kernels, a primary recommendation/requirement

for a new port is to use asm-generic headers as much as
possible

● Some of the headers are mere code switch - no semantical
changes, however some can cause userspace ABI change

● e.g. generic unistd.h removes some of the syscalls, changes
existing syscall numbers

● This means older libc will NOT be compatible with new kernel
● This may or may not be serious issue depending on existing

customer base
● Situation partially mitigated by introducing an ELF header

based ABI versioning check, allowing early detection of non-
compatibility

● upstream kernel version can be
used as a final checkpoint for a
definitive ABI switch

 [ARCLinux]$ /mnt/arc/ltp/testcases/bin/mmap01
 ABI mismatch - you need newer toolchain
 ABI mismatch - you need newer toolchain
 Segmentation fault

©Synopsys 2012 33

Summary

● Every bug is an opportunity to dig deeper and if one pays
attention, most lead to one or more performance
optimization(s)

● Never be afraid to ask “stupid” questions :-)
● System Optimization spans 3 areas: Software, Tools,

Hardware
● ARC Linux has been a fun ride
● The second phase of fun has barely started

● By the time I'm presenting this, the first set of kernel patches
would have hopefully hit lkml and linux-arch for first review !

©Synopsys 2012 34

Thank You !

	Slide01
	Slide02
	Slide03
	Slide04
	Slide05
	Slide06
	Slide07
	Slide08
	Slide09
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Slide 16
	Slide17
	Slide18
	Slide19
	Slide20
	Slide21
	Slide22
	Slide23
	Slide24
	Slide25
	Slide26
	Slide27
	Slide28
	Slide29
	Slide30
	Slide31
	Slide32
	Slide33
	Slide34

