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Agenda

● Introduction
● ARC Architecture
● ARCompact ISA
● Linux Evolution

● Early challenges
● Optimizations
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ARC Architecture

● 32bit RISC load/store Architecture with deep register file (32)

● Cores: ARC600 (MMU-less), ARC700 (MMU)

● MMU: Software Managed TLB,  Address Space ID (ASID)

● Caches: L1: Non-snooping, VIPT

● Two interrupt priorities provided by “in-core” IRQ Controller

● Configurability: at the click of a button - literally !

● Custom Instructions to extend the ISA
● Configurable Cache / MMU Geometry, Page Size
● Gates vs. Performance (e.g. Small or Fast Multiplier)

● Highly efficient with regards to performance/area and 
power/area
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ARCompact ISA

● ISA allow free intermixing of short (2 byte) and long (4 byte) 
instructions and each of these in turn can take a 4 byte LIMM 
(Long immediate).

● Unaligned Data access not supported.

● Most instructions can be conditionally executed (e.g. ADD.neADD.ne)

● Dedicated Call return register (BLINKBLINK)

● LP instructions for Hardware Loops (a.k.a. Zero Overhead Zero Overhead 
LoopsLoops)

● LP_START, LP_END, LP_COUNT registers
● Avoids need for software to decrement-counter and compare-and-

branch every loop iteration
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Toddler Days: Tumbling and Trying
● 2.6.19 ('08)

● Arbitrary tasks segfaulted when system stressed
● Gdb Breakpoints (user-code) worked semi-randomly
● Support for MMU v2 - First tapeout of ARC700 for Linux Host
● Cache “current” task pointer in register optimization
● OProfile support
● Kernel Stack Tracing (Dwarf2 unwinder based)
● Low level Event logging (poor man's LTT)

● 2.6.26 ('09)
● High Resolution Timers / Tickless Idle / RT Signals
● File system corrupted due to Cache flush loop overflow
● Kernel panic on customer board with A/v drivers as modules
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Teen: Growing and Maturing
● 2.6.30 ('10)

● OProfile “opcontrol” shell script randomly terminated
● Serious Optimizations
● Strace Port
● QT 4.5.2 Port
● Support for Extension Instruction to do Endian Swap
● LTP Open Posix Supported

● 2.6.35 ('11)
● Kprobes Support
● Support for ARC700 4.10 (770 core)

– MMU v3 / SASID / LLOCK-SCOND instructions
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● Early challenges
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Filesystem Corruption with DMA

● When IDE Disk Driver switched to DMA, the on-disk 
ext2 filesystem started showing corruption

● ARC Caches are non-snooping / non-coherent
● DMA From-Device requires Invalidating the D$ lines
● DMA To-Device requires Flushing the D$ lines

● Off-by-one error in the D$ line invalidate loop
● Cache flush callers expect inclusive @start but exclusive @end

void inv_dcache_range(unsigned long start, unsigned long end)
{
 ...
     /* Throw away the Dcache lines */
-    while (end >= start) {
+    while (end > start) {
         write_new_aux_reg(ARC_REG_DC_IVDL, start);
         start = start + ARC_DCACHE_LINE_LEN;
     }
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Task Randomly Segfaulting ...

● With 3 telnet sessions, each with a shell script infinite looping on ls, 
sometimes a telnet task segfaulted

● Low Level Event Logger implemented to trace critical Machine 
Events [ IRQs, TLB Miss Exceptions, syscalls ] as well as key 
kernel events: e.g. do_signal, __switch_to( )

● Analyzed the events backwards - from do_signal( ) and in error 
case, it was taking 1 fewer D-TLB exception right before hitting the 
signal

● Background
● MMU exclusively deals with TLB entries (Page Tables are purely for 

kernel, to help manage the TLB entries)

● Page faults are called TLB Miss Exceptions on ARC (separate for 
Instruction-Fetch and Data load/store)

● So task was somehow using an existing D-TLB entry and some 
data in that page mapped to a NULL pointer



©Synopsys 2012 10

Task Randomly Segfaulting (cont)
● TLB entries have an 8-bit ASID to allow entries with same vaddr to 

coexist (corresponding to different tasks) - avoids flush every Task 
switch

● A new task (fork/execve) is assigned an ASID and when it is 
schedule()ed, MMU PID Reg is set with task's ASID

● ASID allocation using a simple wrapping atomic counter - a new 
request gets counter++

● When ASID rolls over, kernel flushes the TLB and restarts the 
allocation cycle - task ASID (re)assignments however remain 
unchanged as that is done “lazily”

● Algorithm by default allows for ASID “stealing”ASID “stealing”: if ASID counter is at 
“N”, a new request gives “N+1” even if it is already allocated

● Unless rest of algorithm is carefully written, the 2 prev points 
combined can cause a ASID reuse - meaning “stale” TLB entries to 
be used by a task
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Task Randomly Segfaulting (cont2)

● Solution was to always keep task->asid behind @ASID_counter

● So in step #2 above,Task-A would be forced to refresh it's ASID, give up 
125 and get 31

● In general, for @ASID_counter = “N”, TLB entries would never pre-exist for 
“N+1”, thus ASID stealing won't cause stale TLB entries reuse.

ASID Allocation Cycle #1
- @ASID_counter is at 124
-Task A starts, ASID 125 assignedTask A

After more allocations, @ASID_counter becomes 255 and wraps around to zero. Process-A->ASID remains 125 because of 
lazy re-allocation algorithm

ASID Allocation Cycle #2
- Task A runs, TLB entries 
  created with ASID 125

ASID Allocation Cycle #2
- @ASID_counter is at 124
-Task B starts,kernel assigns
   125 which causes BUG

0 255124

30

124

ASID counter

2550

0 255125 for A and B

125 for A

125 for A

Task A

Task ATask B

static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,  struct task_struct *tsk)
{
- if (next->context.asid == NO_ASID)
+ if (next->context.asid > asid_cache)

get_new_mmu_context(next);



©Synopsys 2012 12

How we debugged these !
● Some of the issues took many weeks
● Tools

● A very accurate Instruction Set Simulator (ISS) with Instruction Trace

● A JTAG Debugger allowing to peek/poke almost any architectural CPU 
element (TLB, Cache, memory)

● Wrote low level event capture (poor man's LTT)
● And pouring through 100's of events 

● Some luck and lots of patience
● In one case, a crash caused CPU to jump to a random location 

containing zeros (encoding for Branch-to-self instruction). Thus it 
would just spin-loop. The JTAG debugger was still connected. For 2 
days we analysed that dead-but-live system - and eventually found that 
interrupts had not been disabled in a critical TLB programming section 
of code
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Agenda
● Introduction
● Early challenges
● Optimizations

● Software
– Kernel
– uClibc

● Tools assisted
● Hardware assisted

● Community
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Now that we can walk, Run !

● Not all Bugs are bad !
● Most of the early “opportunities” for optimization came straight 

out of staring at objdumps while debugging - without any 
“directed” profiling

● Not afraid to ask “stupid” questions

● Marketing Benchmarking Requests helped the cause 
too

● LMBench was/is standard measuring stick and for a hacker, the 
excitement of beating a competitor in a benchmark is lesser 
only to a few other things in life, mentionable in a public 
forum :-)
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uaccess optimization
● Bootup init.d/rcS makes several mount calls for pseudo/real filesystems 

(e.g. proc/sysfs/devpts/nfs-shares..)
● We saw excessive number of D-TLB Miss Exceptions during boot, due 

to mount syscall copying the “strings” from userspace

● How __get_user( ) works

sys_mount( ) => copy_mount_options( ) => exact_copy_from_user()

       while (n) {      /* 8192 */
              if (__get_user(c, f)) {     --> this loop continued for 8k iterations
                       memset(); break;
               }
               f++; n--;

        __asm__ __volatile__ (            
            "1:   ld      %1, [%2]   \n"          ACTUAL COPY OPERATION

  "      mov  %0, 0   \n"              (default success case sets r0 = 0)
            "2:   nop                   \n"

            "  .section .fixup, \"ax\"  \n"
            “3:   mov  %0, %3    \n”            FIXUP code
            "      j         2b           \n"           (error case, sets r0 = -EFAULT)
            "     .previous           \n" 

            "  .section __ex_table,\"a\"\n"   EXCEPTION Table Entry
            "     .word   1b, 3b        \n"         (links Copy code to Fixup code)
            "     .previous             \n"
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uaccess: What Joy can a Half line diff bring
● The misplaced asm label for fixup caused .ex_table entry to NOT point 

to actual fixup code
● This caused __get_user( ) to NOT return -EFAULT when early end of 

page was encountered, continuing for 8k iterations.

● After fix, total boot time D-TLB Exceptions went down by 2 orders of 
magnitude: from 87,000 to 650 !from 87,000 to 650 !
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Signal Handling Optimization

● A userspace signal handler has to return to kernel to 
restore original user context using SIGRETURN syscall

● Handler return “prep”ed by setting call return register to a 
userspace asm stub which invokes sigreturn syscall

● In Orig Kernel code the asm stub was “synthesized”
● “inject”ed opcodes for sigreturn trap on user stack
● Code modification needed I$ + D$ line flush as well as Page 

Execute permission wiggle

● New Design
● A “real” asm stub in uClibc,                                                   

passed by sigaction() to kernel                                                     
via SA_RESTORER

● No need to muck with user stack at all

.globl __rt_sa_restorer;

.type __rt_sa_restorer, @function

.align 4;
__rt_sa_restorer:
      mov r8, __NR_rt_sigreturn
      swi
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Signal Handling Optimization (cont)

● Also changed to “batch” copying of user mode registers 
(vs. itemized copy)

                                   -->

● LMBench lat_sig {catch,                                              
prot-v} improved significantly

static int setup_sigframe()
 {
   err = __put_user(r->r0, &sf->uc.mc.r0);
   err = __put_user(r->r0, &sf->uc.mc.r1);
....
  err |= __put_user(r->r12, &sf->uc.mc.r12);

static int setup_sigframe()
 {
  unsigned long *src = &(r->bta);
  unsigned long *dst = &(sf->uc.mc.bta);
  unsigned int sz = &(r->r0) - &(r->bta) + 4;

  err = __copy_to_user(dst, src, sz);
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8 bits              11 bits             13 bits  

PGD

0

255

PTE

0

2047

Page Frame
(8k)

Page Table Walking Address Split
● TLB Exception Handler walks the Page Tables to find the 

Virtual-to-Physical mapping for creating the TLB Entry
● ARC Linux implements a 2-tier paging: PGD-Tbl and PTE-Tbl
● Indexing into each level requires vaddr to be split: originally 

8:11:13 which governs the paging geometry
● PGD-Tbl 256 entries (1KB)

● PTE-Tbl 2K entries (8KB)

● Given page sized allocations for all tables, 7k wasted per PGD-
Tbl per process
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Page Table Walking Addr Split (cont)
● When a vaddr is faulted, needing a new PTE-Tbl, the entire 

Table has to be memzero()-ed 
● With 2k entries, as many 'ST 0, [mem]' instructions needed

● A 2k entries deep PTE-Tbl covers 16M of vaddr space which is too 
coarse/large of granularity for vaddr space allocation

● Switched to 11:8:13
● PTE-Tbl now spans 2M of address space, still a reasonable granularity

● A new PTE-Tbl only needs 256 instructions to initialize

●  PGD-Tbl fits w/o memory waste

● A few more minor optimizations
● pgtable_t made ulong instead of struct page *

● Allowed Inline memset instead of clear_page()

● lat_mmap (16k) improved by  ~10%~10%
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uClibc syscall wrappers
● Simple asm stubs which load syscall NR and args in ABI 

designated registers before invoking TRAP into kernel 
and in return possibly set “errno” 

● At heart is one “C” macro with inline asm
● Uses Recursive macro expansion

● Existing version generated lot of useless insn
● Rewrote INLINE_SYSCALL()

● A critical reg var r0 missing
●  errno set out-of-line
● -fomit-frame-pointer

●  Total uClibc shrunk by ~5%, ~5%, while all                        
syscall wrappers combined by ~13%~13%

OLD
00d6b0 
<__libc_nanosleep>:
 d6b0: push_s  blink
 d6b2: st.a    r13,[sp,-8]
 d6b6: st.a    fp,[sp,-4]
 d6ba: mov     fp,sp
 d6be: mov_s   r3,r0
 d6c0: mov     r8,162
 d6c4: mov     r0,r3
 d6c8: swi     
 d6cc: nop     
 d6d0: nop     
 d6d4: mov     r13,r0
 d6d8: cmp     r13,-126
 d6dc: bls.d   d6f2
 d6e0: mov.ls  r0,r13
 d6e4: bl      ada4
 d6e8: rsub    r2,r13,0
 d6ec: st_s    r2,[r0,0]
 d6ee: mov     r0,-1
 d6f2: ld.ab   fp,[sp,4]
 d6f6: ld.as   blink,[sp,2]
 d6fa: ld_s    r13,[sp,0]
 d6fc: j_s.d   [blink] 
 d6fe: add     sp,sp,12
 d702: nop_s

NEW
00c244 <__libc_nanosleep>:
 c244:  mov    r8,162
 c248: swi       
 c24c: brge   r0,0,c25c
 c250: st.a   blink,[sp,-4]
 c254: bl     ad5c
 c258: ld.ab  blink,[sp,4]
 c25c: j_s   [blink] 
 c25e:  nop_s
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Agenda
● ARC Architecture
● Early challenges
● Optimizations

● Software
● Tools assisted

– gcc toggles/peephole
– New gcc features

● Hardware assisted
● Community
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Making Toolchain work for us
● -fomit-frame-pointer made default across the board as it 

caused needless stack operations (w/o helping with 
debugging)

● Kernel built with -O3 improved most LMBench numbers by 
~8%

● By default GP reg not picked by Register Allocator as it is 
typically reserved for small data relocations, which kernel 
can't use. So re-purposed it as a GPR (-fcall-used-gp)

● Peephole for 1-bit multiply
● page_add_file_ramp( ) accesses a 2 entry array nodes_zone[ ]
● Indexing requires a multiply of constant with 1 bit number
● Gcc was generating MPY instructions - which could instead be 

done with a TST + conditional ADD
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Gcc: builtin for alignment check
● Unaligned load/store not supported in Hardware, needing 

additional code (Branches) to check for alignment first

● Branches bad for CPU pipelines:  Mispredicts / I-Cache misses...

● If data start/end are aligned, tight inline loops could be generated 
specially given ARC Zero Delay Loop (ZDL) instructions

● e.g. memzero function call requires 2 instructions to setup args, and 1 
instruction for the Branch -  doable inline in 3 instructions with ZDL

● New __builtin_arc_aligned()__builtin_arc_aligned() compile time detects alignment of data 
types: allowed 55% of kernel memset calls (292 out of 529) to be 
inlined

● ~3% performance gains (pending analysis and not yet applied to 
things like memcpy / copy_(to|from)_user

#define memzero(dst, sz)                                    \ 
({                                                                                                                            \ 
  if (__builtin_constant_p((sz)) && !((sz)%4) && __builtin_arc_aligned(dst, 4) ) { \
     tail_n_head_aligned_memzero(dst, sz/4);   // tight inline loop              \
  } else {                                                \
     extern void * memzero(void *, __kernel_size_t);                                                \
     memzero(dst, sz);  // fall back to function call                  \
  }                                                \
  dst;                                                \
})
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Agenda
● ARC Architecture
● Early challenges
● Optimizations

● Software
● Tools assisted
● Hardware assisted

– New Instructions
– Architectural Changes

● Community



©Synopsys 2012 26

Atomic Read-Modify-Write
● As typical of a RISC architecture, ARC700 originally did not 

support atomic read-modify-write
● However kernel is littered with atomic bitops: set_bit( ) / ... and 

ALU ops: atomic_add( ) / …
● Linux originally disabled interrupts around such code and SMP 

model resorted to using additional global hashed spin lock

● ARC700 4.10 introduced LLOCK/SCOND instructions
● A load from memory “marks” a hardware critical section, and 

the paired store only commits if no IRQs were taken in 
between. If failed, code has to retry !

● All atomic operations converted to these instructions, kernel 
code reduced by ~2%
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MMU Shared Address Spaces (SASID)
● Shared library code despite being “shared” at Page level, still 

needs per-process TLB entries (due to ASID)
● e.g. System with 10 processes and 10 code pages in libc will 

require 100 TLB entries for libc code alone

● While ASID allows segregation of TLB entries (per task), a 
way to aggregate TLB entries (per block of code/data) is 
needed

● Each sharable block of code is assigned a unique SASID (e.g. 
libc 1, libm 2, libpthread 3...)

● A new type of TLB entry introduced in MMU which uses a SASID 
to tag TLB entries

● Task “subscribes” to group of SASID(s): e.g. Per above, 0x5 
gives it access to libc / libpthread. Currently 32 SASIDs possible

● Only requirement from software (loader/kernel) is to map shared 
blocks at exact same vaddr across processes
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MMU Shared Address Spaces (cont)

● Why we gain
● New task mapping existing mapped lib is essentially a “free 

loader”. It reuses the existing TLB entry w/o CPU faulting. 
Additionally complete Linux page fault handling code is short 
circuited. 

● For fork, parent need to Copy-on-write it's entire address space. 
W/o SASID, all TLB entires (code/data) need to be invalidated. 
With SASID, majority of code mappings remain valid.
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Agenda
● ARC Architecture
● Early challenges
● Optimizations
● Community

● Upstreaming
● Possible ABI Fallout
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Upstreaming
● As Linux matured (stability/performance/customer-base), 

attention focused towards community contribution
● Customers demand more closer following of upstream revisions
● Miss the automatic bucket fixes which get applied to all arches (e.g. 

Recent signal handling updates / UAPI split)
● geek factor of your code being in kernel.org and sharing space with 

smarter people
● It's simply the right thing to do!

● Homework
● Pretending like a new port despite being old is a serious handicap

● Lindent / checkpatch / sparse / remove C99 comments

● Refactored for cleaner seperation of platform / drivers / core ARCH code.

● Flattened the existing code in 3.2 port (500+ patches since 2.6.30) and 
then recarved into logical patches (headers, IRQ, syscall...)

● Read Documentation/Submitting*
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Upstreaming (cont)
● Still lot of anxiety in letting “the world” loose on code which had 

never faced “critical” public review
● Contacted some of the key kernel developers: Arnd Bergmann, Paul 

Mundt, GKH all of whom offered welcome advice
● Arnd suggested restructuring the patches into 2 series

– #1: Basic features to get a building/running kernel with console
– #2: Any additional features added incrementally: ptrace, SMP, perf,....

● Follow the last merged architecture to know common mistakes / current 
“trends”

– Same image across platforms

– Reuse the device tree bindings...

● Don't be afraid - it's your code not you that's criticized !

● Be prepared to fix / refix.
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Generic Headers and userspace ABI
● With recent kernels, a primary recommendation/requirement 

for a new port is to use asm-generic headers as much as 
possible

● Some of the headers are mere code switch - no semantical 
changes, however some can cause userspace ABI change

● e.g. generic unistd.h removes some of the syscalls, changes 
existing syscall numbers

● This means older libc will NOT be compatible with new kernel
● This may or may not be serious issue depending on existing 

customer base
● Situation partially mitigated by introducing an ELF header 

based ABI versioning check, allowing early detection of non-
compatibility

● upstream kernel version can be                                               
used as a final checkpoint for a                                                    
definitive ABI switch

 [ARCLinux]$ /mnt/arc/ltp/testcases/bin/mmap01 
    ABI mismatch - you need newer toolchain 
    ABI mismatch - you need newer toolchain 
    Segmentation fault 
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Summary

● Every bug is an opportunity to dig deeper and if one pays 
attention, most lead to one or more performance 
optimization(s)

● Never be afraid to ask “stupid” questions :-)
● System Optimization spans 3 areas: Software, Tools, 

Hardware
● ARC Linux has been a fun ride
● The second phase of fun has barely started

● By the time I'm presenting this, the first set of kernel patches 
would have hopefully hit lkml and linux-arch for first review !
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Thank You !
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