

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

Christopher Friedt

Embedded Linux Conference, 2013
San Francisco, CA

chrisfriedt@gmail.com

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

http://code.google.com/p/gentoo-bionic
http://gentoo-bionic.blogspot.com

http://gitorious.org/gentoo-bionic/gentoo-bionic
http://www.facebook.com/GentooBionic

https://plus.google.com/113359270067626599390

http://code.google.com/p/gentoo-bionic
http://gentoo-bionic.blogspot.com/
http://gitorious.org/gentoo-bionic/gentoo-bionic
http://www.facebook.com/GentooBionic
https://plus.google.com/113359270067626599390

Why? Where? When? What?

RATIONALE

– BACKGROUND

– LICENSING

– MAINTAINABILITY / COMPLEXITY

– MINIMAL BUT EXTENSIBLE

– SCOPE

– THINK INSIDE THE BOX

– SHORT TERM GOALS

How?

BOOTSTRAP

– LINARO GCC PATCH

– REMOVE ANDROID CRUFT

– ADD A NEW ELIBC IN GENTOO

– ./CONFIGURE; MAKE SENSE

– CROSSDEV WAY OR THE HIGHWAY

– EMERGE WORLD

– WHAT NEXT?

Bionic Larry...

Bionic Larry...

Grazing on 1e-9% of the
embedded market since
2010!

Bionic Larry... do not try an milk him

These are
not

udders

Why? Where? When? What?

RATIONALE - HISTORY

● Originally, I wanted to do something to help Google while
they were in the middle of the Oracle / Java legal dispute

● I actually wrote Google with my ideas...

● they interviewed me for a couple of positions...

● but otherwise didn't care :-(

... talk to me after the presentation for some tidbits

Why? Where? When? What?

RATIONALE - LICENSING

● In spite of the GPLv3 exclusion of “system libraries” from
the linking clauses, companies are still terrified to
incorporate GPL software into their embedded products

– afraid of being forced to open their codebase
● poorly written / insecure code vetted by 3rd parties
● leaking intellectual property

Why? Where? When? What?

RATIONALE - LICENSING

● How does a company retain IP in a predominantly open-
source / GPL universe?

– static / shared linking constitute derived works in many
opinions

– most shared library code is not explicitly LGPL

– zero to practically zero static libraries are LGPL

Why? Where? When? What?

RATIONALE - LICENSING

● lease embedded devices to customers and charge for
usage / data

– no change of ownership / no source sharing req

– limited revenue model

– questionable circumvention of software license

Why? Where? When? What?

RATIONALE - LICENSING

● Take chances with FLOSS licenses or reinvent the wheel

– potentially a lot of extra implementation work

– limited domain expertise

– possible license that could change over time

– Could require fork and back-porting new patches

– delaying the inevitable?

Why? Where? When? What?

RATIONALE - LICENSING

● base design around newlib

– BSD licenced libc

– retain userspace IP, linking to newlib

– distribute source for the Linux kernel

– optimized? ... not really

Why? Where? When? What?

RATIONALE - LICENSING

● I gathered this was fairly common industry opinion after
consulting for various companies in industrial radio,
embedded imaging, shipping / receiving, automated
asset management, etc

BUT...

Why? Where? When? What?

RATIONALE - LICENSING

● the Linux kernel is awesome

– the GPLv2 license is working well for it

– no need to “fix” what isn't broken

Why? Where? When? What?

RATIONALE - LICENSING

● There might even be some kernel-envy in the rest of the
embedded world!

● Linux supports more arch's, chips, platforms, boards than
any other OS kernel on the planet!

● It's easy to get ported, and Linux is what clients want
driving their embedded platforms

LUCKILY...

Why? Where? When? What?

RATIONALE - LICENSING

● The Linux kernelspace / userspace interface is BINARY

● This is what allows arbitrarily licensed userspace software
to run on top of the GPLv2 Linux kernel

● Kernel interaction is not “linking” (at runtime or compile-
time), it's setting up arguments on the stack and jumping!

● Corollary: libc builds own syscalls using NUMBERS

SOOOO...

Why? Where? When? What?

RATIONALE - LICENSING

● Use a BSD-licensed C library and other system libraries
on top of the Linux kernel

Why? Where? When? What?

RATIONALE - LICENSING

● Use a BSD-licensed C library and other system libraries
on top of the Linux kernel

» USE BIONIC

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● already hacked the same Bionic C runtime for a couple of
different clients a couple of different times

– Just Worked™

– was very slim, but optimized where it counts

– it didn't take a lot of effort

– (to me the effort part was important!)

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● The Bionic C library is - fairly well organized..

– is documented / commented where merited

– is kept simple (intentionally!)

– has no cryptic autotools or (many) scripts for building

– is easily extensible

– compiles really quickly!

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● Why reinvent the wheel every time?

– Bionic is BSD licensed, and there was no client-
specific IP in it, that I had added.

– Allow others to benefit from it's usage

– And contribute back
● No need to reinvent distro's, package managers, etc

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● I was familiar with Gentoo .ebuild syntax

● Same code could easily be built & packaged for

– Ångström / OpenEmbedded / OpenWRT (.ipk)

– Debian / Ubuntu (.deb)

– Redhat (.rpm)

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Bionic is small (e.g. for libc.so)

C Library Size (bytes)

glibc 1209672

uClibc 327023

bionic 290912

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Adding syscalls?

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Adding syscalls? - SUPER EASY! Just add them to
libc/SYSCALLS.TXT!

● an assembly wrapper is created automagically by

libc/tools/gensyscalls.py
● e.g. int pivot_root(const char *, const char *) 117,118,117

● [return type] [syscall name]([parameters]) [arm,x86,mips]

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Added syscalls:

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Missing an ioctl / syscall / struct declaration?

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Missing an ioctl / syscall / struct declaration?

● ALSO SUPER EASY!

● preprocess the raw header information with

libc/tools/clean_header.py
● just remember: no inline functions, no macros, no

comments!

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Added headers

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Adding libc functions?

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Adding libc functions? - SUPER EASY!

– create a test rig outside of libc

– compile your test rig

– test your libc function

– when testing done, add to ${FILESDIR} as a patch!

– files/${PV}/NNNN-yay-i-implemented-a-libcfunc.patch

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Added libc functions

Why? Where? When? What?

RATIONALE - SCOPE

● Is Gentoo-Bionic Gentoo-specific?

– NO!

– Gentoo was used as the initial vehicle for compiling
the Bionic C library and toolchain

– Bionic / toolchain could be built for any Linux distro

– build system changes for said distros would be
minimal, once autoconf integration is done

Why? Where? When? What?

RATIONALE - SCOPE

● Also not limited to usage on existing distributions

● Rather, it should serve as a starting point, inspiring new
and different distributions

Why? Where? When? What?

RATIONALE - SCOPE

● Gentoo just has a really great cross-compiler
infrastructure and build system (Portage)

– chost=armv7a-neon-linux-bioniceabi

– chost=i686-pc-linux-bionic

– crossdev --target ${chost}

– ${chost}-emerge bash
● all (runtime / build) dependencies included

Why? Where? When? What?

RATIONALE - THINK INSIDE THE BOX

● Recently switched to OS X from Linux for my workstation

(queue Booing from crowd)
● The UI (partially) did it for me, but I also liked not feeling

the need to fix things!

● I liked the minimalistic “feel” to the libc, and how things
basically always Just Worked™

Why? Where? When? What?

RATIONALE - THINK INSIDE THE BOX

● The graphics stack intrigued me

● Liked the idea of using some (certain) proprietary software
packages

● Why can't we have one (or many) “proprietary” Linux
variants?

● ... but Mac OS X kind of sucks under the hood

● supported & default FS (global lock?)

Why? Where? When? What?

RATIONALE - (SHORT TERM) GOALS

● Layman(8) overlay

● Upstream (basic) inclusion in Portage

● Downloadable (tiny) VM images

– qemu, VMWare, VirtualBox

– arm (qemu), x86 for VMWare / VirtualBox

Why? Where? When? What?

How?

BOOTSTRAP - LINARO GCC PATCH

● Alexandre Sack's gcc-4.6 patch

– default linker specs with -mandroid

– crt*.o for linking

– /system/bin/linker

– toolchain was no longer tied to android.com

How?

BOOTSTRAP - LINARO GCC PATCH

● why use the /system prefix?

● why use /system/bin/linker?

● not just arm!

● preserve that for -mandroid

● remove the Android cruft for -mbionic

● try to behave like a normal toolchain!

How?

BOOTSTRAP - REMOVE ANDROID CRUFT

● for Bionic to behave like a normal libc

– /etc/passwd, /etc/group, /etc/resolv.conf, ...
● Android went through system properties and hard-coded

UID's and GID's

How?

BOOTSTRAP - ADD A NEW LIBC

● Portage changes:

– portage/profiles/desc/elibc.desc

– portage/profiles/embedded/bionic/*

How?

BOOTSTRAP - ./CONFIGURE; MAKE SENSE

● gnuconfig changes:

– config.sub

– config.guess

How?

BOOTSTRAP - CROSSDEV WAY OR THE HIGHWAY

● crossdev changes:

– LPKG=bionic; KPKG=bionic-kernel-headers

– include/site/*bionic* (basically a copy of *uclibc*)

– above files necessary for autoconf functionality
● crosscompile_opts_headers-only

● nocxx / cxx

How?

BOOTSTRAP - EMERGE WORLD!

● Although there is/are a/many rigid specifications of what
must be in a libc.. thanks to GNU, there is a
monotonically increasing list of “expected” features as
well.

● emerge busybox, emerge bash, emerge jamvm...

● Keep testing, finding, and reporting bugs, adding features
as required

How?

● BOOTSTRAP - EMERGE WORLD!

● Compiled packages (so far)

How?

BOOTSTRAP - WHAT NEXT?

● HELP WANTED!

– pthread_cancel

– glibc-like ld.so behaviour

– optional locale

– self-hosting gcc (clang?)

– [func]_r (thread-safe versions of functions)

– more crypt algos

How?

BOOTSTRAP - WHAT NEXT?

● Beyond bootstrap

– Talk to me after the presentation

– I could go on... seriously!

mäk – A SHORTER / FASTER MAK

● separately installable variant of the Android build system

– non-C language support to be included via extension
● like Automake's .am files, mäk's .mk files are declarative

● export MAK_ROOT=/usr/share/mak

● ./configure; make -jN; make -jN install

● non-recursive replacement for Automake = FAST

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

DEMOS

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

Q&A

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

THANKS!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

