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Why? Where? When? What?

RATIONALE

– BACKGROUND

– LICENSING

– MAINTAINABILITY / COMPLEXITY

– MINIMAL BUT EXTENSIBLE

– SCOPE

– THINK INSIDE THE BOX

– SHORT TERM GOALS



  

How?

BOOTSTRAP

– LINARO GCC PATCH

– REMOVE ANDROID CRUFT

– ADD A NEW ELIBC IN GENTOO

– ./CONFIGURE; MAKE SENSE

– CROSSDEV WAY OR THE HIGHWAY

– EMERGE WORLD

– WHAT NEXT?



  

Bionic Larry...



  

Bionic Larry...

Grazing on 1e-9% of the 
embedded market since 
2010!



  

Bionic Larry... do not try an milk him

These are
not

udders



  

Why? Where? When? What?

RATIONALE - HISTORY

● Originally, I wanted to do something to help Google while 
they were in the middle of the Oracle / Java legal dispute

● I actually wrote Google with my ideas...

● they interviewed me for a couple of positions...

● but otherwise didn't care :-(

... talk to me after the presentation for some tidbits



  

Why? Where? When? What?

RATIONALE - LICENSING

● In spite of the GPLv3 exclusion of “system libraries” from 
the linking clauses, companies are still terrified to 
incorporate GPL software into their embedded products

– afraid of being forced to open their codebase
● poorly written / insecure code vetted by 3rd parties
● leaking intellectual property



  

Why? Where? When? What?

RATIONALE - LICENSING

● How does a company retain IP in a predominantly open-
source / GPL universe?

– static / shared linking constitute derived works in many 
opinions

– most shared library code is not explicitly LGPL

– zero to practically zero static libraries are LGPL



  

Why? Where? When? What?

RATIONALE - LICENSING

● lease embedded devices to customers and charge for 
usage / data

– no change of ownership / no source sharing req

– limited revenue model

– questionable circumvention of software license



  

Why? Where? When? What?

RATIONALE - LICENSING

● Take chances with FLOSS licenses or reinvent the wheel

– potentially a lot of extra implementation work

– limited domain expertise

– possible license that could change over time

– Could require fork and back-porting new patches

– delaying the inevitable?



  

Why? Where? When? What?

RATIONALE - LICENSING

● base design around newlib

– BSD licenced libc

– retain userspace IP, linking to newlib

– distribute source for the Linux kernel

– optimized? ... not really



  

Why? Where? When? What?

RATIONALE - LICENSING

● I gathered this was fairly common industry opinion after 
consulting for various companies in industrial radio, 
embedded imaging, shipping / receiving, automated 
asset management, etc

BUT...



  

Why? Where? When? What?

RATIONALE - LICENSING

● the Linux kernel is awesome

– the GPLv2 license is working well for it

– no need to “fix” what isn't broken



  

Why? Where? When? What?

RATIONALE - LICENSING

● There might even be some kernel-envy in the rest of the 
embedded world!

● Linux supports more arch's, chips, platforms, boards than 
any other OS kernel on the planet!

● It's easy to get ported, and Linux is what clients want 
driving their embedded platforms

LUCKILY...



  

Why? Where? When? What?

RATIONALE - LICENSING

● The Linux kernelspace / userspace interface is BINARY

● This is what allows arbitrarily licensed userspace software 
to run on top of the GPLv2 Linux kernel

● Kernel interaction is not “linking” (at runtime or compile-
time), it's setting up arguments on the stack and jumping!

● Corollary: libc builds own syscalls using NUMBERS

SOOOO...



  

Why? Where? When? What?

RATIONALE - LICENSING

● Use a BSD-licensed C library and other system libraries 
on top of the Linux kernel



  

Why? Where? When? What?

RATIONALE - LICENSING

● Use a BSD-licensed C library and other system libraries 
on top of the Linux kernel

» USE BIONIC



  

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● already hacked the same Bionic C runtime for a couple of 
different clients a couple of different times

– Just Worked™

– was very slim, but optimized where it counts

– it didn't take a lot of effort

– (to me the effort part was important!)



  

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● The Bionic C library is - fairly well organized..

– is documented / commented where merited

– is kept simple (intentionally!)

– has no cryptic autotools or (many) scripts for building

– is easily extensible

– compiles really quickly!



  

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● Why reinvent the wheel every time?

– Bionic is BSD licensed, and there was no client-
specific IP in it, that I had added.

– Allow others to benefit from it's usage

– And contribute back
● No need to reinvent distro's, package managers, etc



  

Why? Where? When? What?

RATIONALE – MAINTAINABILITY / COMPLEXITY

● I was familiar with Gentoo .ebuild syntax

● Same code could easily be built & packaged for

– Ångström / OpenEmbedded / OpenWRT (.ipk)

– Debian / Ubuntu (.deb)

– Redhat (.rpm)



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Bionic is small (e.g. for libc.so) 

C Library Size (bytes)

glibc 1209672

uClibc 327023

bionic 290912



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Adding syscalls?



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Adding syscalls? - SUPER EASY! Just add them to 
libc/SYSCALLS.TXT!

● an assembly wrapper is created automagically by 

libc/tools/gensyscalls.py
● e.g. int pivot_root(const char *, const char *) 117,118,117

● [return type] [syscall name]([parameters]) [arm,x86,mips]



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Added syscalls:



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Missing an ioctl / syscall / struct declaration?



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Missing an ioctl / syscall / struct declaration?

● ALSO SUPER EASY!

● preprocess the raw header information with

libc/tools/clean_header.py
● just remember: no inline functions, no macros, no 

comments!



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Added headers



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Adding libc functions?



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

● Adding libc functions? - SUPER EASY!

– create a test rig outside of libc

– compile your test rig

– test your libc function

– when testing done, add to ${FILESDIR} as a patch!

– files/${PV}/NNNN-yay-i-implemented-a-libcfunc.patch



  

Why? Where? When? What?

RATIONALE - MINIMAL BUT EXTENSIBLE

Added libc functions



  

Why? Where? When? What?

RATIONALE - SCOPE

● Is Gentoo-Bionic Gentoo-specific?

– NO! 

– Gentoo was used as the initial vehicle for compiling 
the Bionic C library and toolchain

– Bionic / toolchain could be built for any Linux distro

– build system changes for said distros would be 
minimal, once autoconf integration is done



  

Why? Where? When? What?

RATIONALE - SCOPE

● Also not limited to usage on existing distributions

● Rather, it should serve as a starting point, inspiring new 
and different distributions



  

Why? Where? When? What?

RATIONALE - SCOPE

● Gentoo just has a really great cross-compiler 
infrastructure and build system (Portage)

– chost=armv7a-neon-linux-bioniceabi

– chost=i686-pc-linux-bionic

– crossdev --target ${chost}

– ${chost}-emerge bash
● all (runtime / build) dependencies included



  

Why? Where? When? What?

RATIONALE - THINK INSIDE THE BOX

● Recently switched to OS X from Linux for my workstation

(queue Booing from crowd)
● The UI (partially) did it for me, but I also liked not feeling 

the need to fix things!

● I liked the minimalistic “feel” to the libc, and how things 
basically always Just Worked™



  

Why? Where? When? What?

RATIONALE - THINK INSIDE THE BOX

● The graphics stack intrigued me

● Liked the idea of using some (certain) proprietary software 
packages

● Why can't we have one (or many) “proprietary” Linux 
variants?

● ... but Mac OS X kind of sucks under the hood

● supported & default FS (global lock?)



  

Why? Where? When? What?

RATIONALE - (SHORT TERM) GOALS

● Layman(8) overlay

● Upstream (basic) inclusion in Portage

● Downloadable (tiny) VM images

– qemu, VMWare, VirtualBox

– arm (qemu), x86 for VMWare / VirtualBox



  

Why? Where? When? What?



  

How?

BOOTSTRAP - LINARO GCC PATCH

● Alexandre Sack's gcc-4.6 patch

– default linker specs with -mandroid

– crt*.o for linking

– /system/bin/linker

– toolchain was no longer tied to android.com



  

How?

BOOTSTRAP - LINARO GCC PATCH

● why use the /system prefix?

● why use /system/bin/linker?

● not just arm!

● preserve that for -mandroid

● remove the Android cruft for -mbionic

● try to behave like a normal toolchain!



  

How?

BOOTSTRAP - REMOVE ANDROID CRUFT

● for Bionic to behave like a normal libc

– /etc/passwd, /etc/group, /etc/resolv.conf, ...
● Android went through system properties and hard-coded 

UID's and GID's



  

How?

BOOTSTRAP - ADD A NEW LIBC

● Portage changes:

– portage/profiles/desc/elibc.desc

– portage/profiles/embedded/bionic/*



  

How?

BOOTSTRAP - ./CONFIGURE; MAKE SENSE

● gnuconfig changes:

– config.sub

– config.guess



  

How?

BOOTSTRAP - CROSSDEV WAY OR THE HIGHWAY

● crossdev changes:

– LPKG=bionic; KPKG=bionic-kernel-headers

– include/site/*bionic* (basically a copy of *uclibc*)

– above files necessary for autoconf functionality
● crosscompile_opts_headers-only

● nocxx / cxx



  

How?

BOOTSTRAP - EMERGE WORLD!

● Although there is/are a/many rigid specifications of what 
must be in a libc.. thanks to GNU, there is a 
monotonically increasing list of “expected” features as 
well.

● emerge busybox, emerge bash, emerge jamvm...

● Keep testing, finding, and reporting bugs, adding features 
as required



  

How?

● BOOTSTRAP - EMERGE WORLD!

● Compiled packages (so far)



  

How?

BOOTSTRAP - WHAT NEXT?

● HELP WANTED!

– pthread_cancel

– glibc-like ld.so behaviour

– optional locale

– self-hosting gcc (clang?)

– [func]_r (thread-safe versions of functions)

– more crypt algos



  

How?

BOOTSTRAP - WHAT NEXT?

● Beyond bootstrap

– Talk to me after the presentation

– I could go on... seriously!



  

mäk – A SHORTER / FASTER MAK

● separately installable variant of the Android build system

– non-C language support to be included via extension
● like Automake's .am files, mäk's .mk files are declarative

● export MAK_ROOT=/usr/share/mak

● ./configure; make -jN; make -jN install

● non-recursive replacement for Automake = FAST



  

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

DEMOS



  

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

Q&A



  

Gentoo-Bionic
We can Rebuild him. Better. Stronger. Faster.

THANKS!
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