
E­Paper Displays
•5 minutes of Physics & Chemistry :-)
•Linux, Fbdev, & Deferred IO
•Demo
•Future work, controllers, technology



Quick Disclaimer:
•My crystal ball has ECC problems. Some 

of my claims and predictions about the 
controllers and technology direction may 
be wrong.

•I have hearing problems. Please speak 
loudly and slowly.
• I'm not here speaking on behalf of any 
E-paper company.
• Just an excited embedded Linux 
hacker :-)



Why am I excited?



Why am I excited?



Quick Overview

Electronic Paper



Why am I excited?



Quick Overview



Why am I excited?



Pretty Pictures. That's why I'm excited.



I hope you are excited too.



Software Issues. E-paper's Challenges

●Display latency. (Viscosity)
●Display controllers are unusual. Not PCI, 
AGP, PCI-E! Not memory mappable.
●GPIO, AMLCD.
●Need specialized waveforms to drive the 
material.
●Need memory to store the waveforms.
●Temperature sensitive waveforms.



E-Ink Apollo (Hecuba) and Epson/E-Ink 
Broadsheet EPD Controller



Linux Challenges

How do we memory map a "non memory 
mappable" IO interface like GPIO?

How do we mitigate the latency associated 
with display updates?



A possible solution: Deferred IO

What exactly does defio do?
How does it work?



Deferred IO
What?
Framebuffer pages in host 
memory
Page entries read-only
App writes to anywhere, say 
a particular page
Use page fault to start 
delayed workqueue

Leave page as writable. Add 
page to pagelist.
App keeps writing to page. 
Free of charge.
Workqueue kicks off.
Perform IO to display
Mark page as read-only
Lather, Rinse and Repeat



What is nice about deferred IO?

•Solves latency
•App is unimpeded by display latency.
–Solves IO interface
•Use any IO you want. AMLCD. USB. GPIO. Works 
with mmap.
–Solves userspace write detection. No polling. No 
timers.
–You know exactly which pages have been 
written to.



Broadsheet 
sw arch



Deferred IO: How is it used?

 Setup your struct:

static struct fb_deferred_io myfb_defio = 
{

 .delay          = HZ, // 1 second
 .deferred_io    = myfb_defio_handler,
 };



Deferred IO: How to use?
 Setup your defio handler:

static void myfb_defio_handler(struct 
fb_info *info, struct list_head 
*pagelist)

{
 list_for_each_entry(cur, pagelist...) {
  do_io_for_fb_page(cur);
 }
}
  



Deferred IO

Where? When?
In mainline Linux today
Added in 2.6.22
Usable since 2.6.25
Who's using it?
hecubafb, metronomefb, broadsheetfb, 
xen_pvfb
other out of tree drivers for matrix and usb 
framebuffer devices.



Lets watch some video clips



xloadimage



Other Technologies



Cholesteric LCD

- planar

- focal conic texture



Others:

QRLPD

Bi-Stable LCD

IMOD

Electrowetting



Future Work

•Still a lot to do
•Lots of optimizations to be made
•Partial Update & Coalescing
•Sub-page detection
•Buffering
•Cleaning up update sequences



Future Work

Controller supports changing display source address. Ie: 
can change equivalent of smem_base dynamically.
Expose via ypan? Like double buffering? Or overlay?
Controller supports different “usage mode” impulse 
waveform modes. Eg: fast but buildup, slow and flash but 
clean, automode? App hints? Tracking history?
Multi buffering? Prerendered pages for e-book readers
Graphical Framework awareness of refresh rate. Qt. Gtk. 
etc



Future Work: Controller Quirks

Controller supports queued updates. Ie: can queue (fixed 
queue size) a series of updates that don't need to wait for 
completion (ie: don't need to use sync). How do we 
expose this? 
Or do we go the traditional way? Ie: assume app doesn't 
want sync() by default and so all updates use the async 
queue by default unless app imposes otherwise? How do 
we manage the queue size?



Thanks!

•Thanks to fbdev people: Tony, Geert, Kryzstof, James
•Thanks to all code reviewers
•Special thanks to CELF, NLUUG, Ruud, Armijn and 
organizers!



Questions/Answers
or

Additional Slides if we have 
time.

I welcome your feedback to jayakumar.lkml@gmail.com



E-Ink Metronome EPD Controller



Deferred IO: How to use?

 Setup init and cleanup:

_init() {
 info­>fbdefio = &myfb_defio;
 fb_deferred_io_init(info);

_exit() {
 fb_deferred_io_cleanup(info);
  



Quick Overview

Electrophoretic Displays
Reflective
Bi-stable

Electronic Paper



I like pretty pictures:



Sources & References:
Figures:
E-Ink

Kent Displays

Qualcomm

Bridgestone

Plastic Logic

Polymer Vision

Liquavista

PVI

Sipix

Sony

Amazon

Epson

Nemoptic

Data:
EE Times


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

