
ELC Europe 2018

Geƫng your patches into
mainline Linux

What not to do (and a few things you could try instead)

Marc Zyngier <marc.zyngier@arm.com>

October 22, 2018

© 2018 Arm Limited

Opening credits

Been messing with the Linux kernel since 1993
Please blame Stéphane Eranian...

First patches merged in 1996 (md driver)
Don’t email me if your disk array gets corrupted...
Offloaded maintainership in 1997

With ARM since 2010
Trying to bridge architecture, hardware, and obviously Linux

Looking aŌer
KVM/arm together with Christoffer Dall
IRQ subsystem together with Thomas Gleixner

2 © 2018 Arm Limited

Disclaimer

This isn’t a maintainer rant!
This talk is for EVERYONE!
Does not only apply to first Ɵme contributors

There is something for long Ɵme hackers as well!

Not all maintainers will agree with me
If you get flamed for doing any of this, send them my way!

3 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

Recurrent themes

There is a bit of a disconnect between contributors and maintainers:

“My patches are being ignored”

“I have posted these patches 4 Ɵmes, and they are sƟll not merged”

“I’ve copied this code from a mainline driver, and you’re telling me it isn’t right”

“I only want this code merged, I don’t have the Ɵme to do all this extra work”

“But I’m giving you this code for free, why aren’t you just taking it?”

“I don’t have the Ɵme to understand this, just tell me what I should write”

4 © 2018 Arm Limited

The characters

5 © 2018 Arm Limited

The Contributor

Submits a change to the mainline kernel source

Intends to get it merged eventually
Can be

a new feature
a bug fix
code cleanup

Complexity of the changes ranges from trivial to brain-melƟng
The contributor is oŌen the one who understands the problem best

6 © 2018 Arm Limited

The Reviewer

Can be disƟnct from the maintainer

OŌen other contributors

Spreads the load, so that maintainers do scale

Probably the least recognised, and yet one of the most important characters in this story

7 © 2018 Arm Limited

The Maintainer

The maintainers are responsible for some piece of code in
the kernel:

not to break
to be secure
readable, understandable

UlƟmately the ones who put their neck on the line
Spend an awful lot of Ɵme reviewing other people’s code

OŌen the target of hundreds of emails a day

8 © 2018 Arm Limited

MoƟvaƟons

These characters have quite a few things in common:

MeeƟng at a single point of contenƟon: the code

Trying to solve difficult problems

Individual responsibility, personal investment

Very oŌen not their main job

Quite oŌen a contributor grows into a reviewer, and then a maintainer

9 © 2018 Arm Limited

The plot

10 © 2018 Arm Limited

The kernel submission workflow

You have wriƩen patches for a wicked idea:

Post a patch series

Get it reviewed

Respond to comments

Rinse, repeat

Looks simple, but there is a lot behind this.

What is that “patch series” thing?

Who do I send it to? How do I get it reviewed?

I don’t understand these comments and other requests

11 © 2018 Arm Limited

The kernel submission workflow

You have wriƩen patches for a wicked idea:

Post a patch series

Get it reviewed

Respond to comments

Rinse, repeat

Looks simple, but there is a lot behind this.

What is that “patch series” thing?

Who do I send it to? How do I get it reviewed?

I don’t understand these comments and other requests

...

11 © 2018 Arm Limited

The kernel submission workflow

You have wriƩen patches for a wicked idea:

Post a patch series

Get it reviewed

Respond to comments

Rinse, repeat

Looks simple, but there is a lot behind this.

What is that “patch series” thing?

Who do I send it to? How do I get it reviewed?

I don’t understand these comments and other requests

Can be overwhelming

11 © 2018 Arm Limited

What is a patch series

It is an ordered set of patches

It is conceptually a single change

Split into mulƟple patches

Spliƫng patches is a hard topic

Nothing in the kernel breaks at any point in the middle of the series

We have a limited capacity to process huge changes in one go

12 © 2018 Arm Limited

What does a patch series look like

Each patch has a Ɵtle and a clear commit message
Each patch is numbered x/n (patch number x out of n)

Where x is unique, n is constant across the series, and x <= n

It has a unique version number for the whole series
Do not post a series with the same version number twice!

It has a cover leƩer, numbered 0/n
Usually only if there is more than a single patch
The cover leƩer describe the goal of the series and contains a change log
It contains a diff-stat of the whole series
All the patches in the series are in reply to the cover leƩer

13 © 2018 Arm Limited

Why these requirements?
From a maintainer or reviewer point of view, these requirements are crucial:

Ordered:
Allows the reviewer to see a progression in the design
Needed for bisecƟon

Logical changes:
MulƟple things changing at once make things hard to review

Patch numbering:
Am I missing any patch in this series?
Helps with the ordering/threading in an email client

Version numbering:
Is this something new? Or has it been reviewed already?
Don’t reply with a single patch with a new version number

Cover leƩer:
So you know what changed from one revision to another
Make sure all the recipients of the series receive the cover leƩer
A chance to having a conversaƟon with the maintainers

14 © 2018 Arm Limited

Patch series: Don’t do that

If you’re about to send something that may end up looking like this:

(Mon)18:58 [Anonymous] RESEND [PATCH v5 10/12] arm64: vdso: replace gettimeofday.S with global vgettimeofday.C
(Mon)18:58 [Anonymous] RESEND [PATCH v3 1/3] arm64: compat: Split the sigreturn trampolines and kuser helpers (C sources)
(Mon)18:58 [Anonymous] RESEND [PATCH v3 2/3] arm64: compat: Split the sigreturn trampolines and kuser helpers (assembler ...
(Mon)18:58 [Anonymous] RESEND [PATCH v3 3/3] arm64: compat: Add CONFIG_KUSER_HELPERS
(Mon)18:58 [Anonymous] RESEND [PATCH] arm64: compat: Expose offset to registers in sigframes
(Mon)18:58 [Anonymous] RESEND [PATCH v2 6/6] arm64: Wire up and expose the new compat vDSO

... please don’t.

Trying to make sense of this series is just too hard

Probably missing on some very good code

This is a net loss for the kernel

15 © 2018 Arm Limited

Use the tools, Luke

git is really the only tool you need
and there is no life worth living outside of git...

Although you can use some tool on top of git itself
But really, you don’t need that

Do not send patch series by hand. Ever.
One-off configuraƟon:

Configure git as an email client
Set sendmail.tocover=1, sendmail.cccover=1 in ~/.gitconfig

For each series you want to send:
IdenƟfy the recipients for this series. Use scripts/get_maintainers.pl
git format-patch -o patches/blah -v3 --cover-letter v4.19..HEAD
Edit patches/blah/v3-0000-cover-letter.patch, adding the recipients in your cover leƩer
git send-email --dry-run patches/blah/v3-*patch
If it looks good, drop the --dry-run and let it roll

16 © 2018 Arm Limited

Using email

Please use the canonical email eƟqueƩe when posƟng or responding:

Plain text email only, no HTML

Reply inline, not top-posƟng

Avoid aƩachements if at all possible

No silly disclaimer (this is a public mailing list!)

Cc people when it maƩers

Keep the Cc list short

Trim the email you’re responding to the essenƟal context

17 © 2018 Arm Limited

Digression: why email
“Why do you use this silly outdated technology instead of [web-thing-of-the-week]?”
Well, email is:

MulƟ-plaƞorm
Archived
Available offline
Not interacƟve
Distributed
Easy to integrate with git and CI

Geƫng rid of email would require a new system to saƟsfy these properƟes.
Of course, quite a few organisaƟon cannot do email properly...

That’s a valid concern
A lot of people are using their personal email for this
ELC talk idea for next year: SMTP in a����XXXXhosƟle corporate environment

18 © 2018 Arm Limited

Of reviewers and bandwidth

You’ve posted a patch series two days ago and quickly received some comments

You’ve quickly addressed those, collected all the Acks and review tags

... and now eager post a new version

Now take a deep breath. Give a chance to other reviewers to catch up with your work.

PosƟng too oŌen is usually counter-producƟve

Only results in a DoS on the reviewer (you don’t want that)

Allow about a week between each version, unless asked for an immediate respin

Remember how long it took you to write these patches

Reviewing them won’t be any quicker

19 © 2018 Arm Limited

Screenplay

20 © 2018 Arm Limited

The maintainer/reviewer workflow

Is it something I’m interested in or maintain?
Does the patch series make sense?
Is there any reported failure?
Fix or feature?
PrioriƟsaƟon
Each maintainer or reviewer has specific requirements

No such thing as One Siǌe Fits All

But there is something that influences the above: Trust

This is how we recognise contributors and reviewers
Most oŌen people who go the extra mile
When a reviewer or maintainer asks for some extra work on a patch series

It is not to annoy the contributor
It is to improve the overall quality of the kernel itself
Eventually to build trust between the two parƟes

21 © 2018 Arm Limited

The maintainer/reviewer workflow

Is it something I’m interested in or maintain?
Does the patch series make sense?
Is there any reported failure?
Fix or feature?
PrioriƟsaƟon
Each maintainer or reviewer has specific requirements

No such thing as One Siǌe Fits All

But there is something that influences the above: Trust

This is how we recognise contributors and reviewers
Most oŌen people who go the extra mile
When a reviewer or maintainer asks for some extra work on a patch series

It is not to annoy the contributor
It is to improve the overall quality of the kernel itself
Eventually to build trust between the two parƟes

21 © 2018 Arm Limited

Why trust?

This is how the overall patch merging model works. There is trust between:

Linus and the top-level maintainers

top level maintainers and their sub-maintainers

co-maintainers of a single subsystem

In the end, this trust is just as important as the code.

A soŌware project that doesn’t encourage contribuƟons dies

One of maintainers’ role is to retain the best contributors

We always need new reviewers and co-maintainers

The best contribuƟons benefit the largest part of the community

This requires involvement of all parƟes

22 © 2018 Arm Limited

Building trust

A maintainer or reviewer can ask you to do some addiƟonal work:

Provide a beƩer infrastructure

Refactor code to limit duplicaƟon

Move bits of a feature to core code

Try to step away from your own code for a while...

See how this request fits into the overall kernel

If the request is unclear, ask for clarificaƟon!

If you think this isn’t jusƟfied, try to come up with your own proposal

The maintainer is not always right, give them an alternaƟve perspecƟve

Become the trusted maintainer of your own code!

23 © 2018 Arm Limited

Digression: Drive-by patching

One-off contribuƟons
Contributor never to be seen again

SomeƟmes the kernel equivalent of “fly-Ɵpping”
See the above “:ust take it already”

We do not want to discourage this
A number of bug fixes come from those one-offs
Some other are just a bunch of unmaintainable changes

We’d also like to convince these people to sƟck around...
AŌer all, we all started with this first patch...

It is unclear how we can incenƟvise these contributors to

Look for another issue to fix

Have a more conƟnued engagement with the kernel community

24 © 2018 Arm Limited

Becoming a reviewer

One of best way to improve your kernel-foo is to review patches

Pick something you’re interested in

You don’t have to be an expert in the domain

You just need to be able to follow the code

If something seems unclear, ask quesƟons!

If you spot a problem, say so!

If you’re saƟsfied with the way the code looks:

OpƟonally provide a “Reviewed-by”

Remember that you’re reviewing “to the best of your ability”

Even if you’re not providing a tag, your input is valuable

25 © 2018 Arm Limited

Be your first reviewer

Before you’re about to send a patch series:

Read your own patches
I mean it!
Really!
This is the best way to catch basic mistakes

Put yourself in the reviewer’s shoes
Does this code make sense?
Is it split in a coherent way?
Is it commented, documented well enough?
Have you taken all the review items into account?
Have you collected all the Acked-by: and Reviewed-by: tags?

If you’ve answered “yes” to all the above, ship it!

26 © 2018 Arm Limited

Closing comments

ContribuƟng to the Linux kernel is both tough and rewarding

We are all trying to work together on changing some part of a code-base

Understanding each other’s point of view is key – but can be really hard

Building a level of trust and understanding makes everything easier

We have tools and processes for good reasons – we are not just trying to be difficult. Honestly.

Ask me anything if you’re in doubt. Please trust me to be friendly.

27 © 2018 Arm Limited

Thank you

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

	
	Opening credits
	Disclaimer
	Recurrent themes
	
	The Contributor
	The Reviewer
	The Maintainer
	Motivations
	
	The kernel submission workflow
	What is a patch series
	What does a patch series look like
	Why these requirements?
	Patch series: Don't do that
	Use the tools, Luke
	Using email
	Digression: why email
	Of reviewers and bandwidth
	
	The maintainer/reviewer workflow
	Why trust?
	Building trust
	Digression: Drive-by patching
	Becoming a reviewer
	Be your first reviewer
	Closing comments
	

