
Toolchains in the New Era
How to Update Safely
SW Eng. Victor Rodriguez

#lfelc @twitterhandle

#lfelc

0

50

100

150

200

250

Commits per developer

Number of commits per developer over git history

GCC Linux Kernel

GNU compiler community do a lot of work per developer
How much in terms of commits per developer?

* Information taken from gcc and linux githubs repos

https://github.com/gcc-mirror/gcc
https://github.com/torvalds/linux

#lfelc

Agenda

– What’s new?
• Security
• Profiling
• New instructions

– How to manage the new toolchain?
• Build and install
• System rebuild
• Common problems
• How to fix them?

GCC new features
(security)

This Photo by Unknown Author is licensed under
CC BY-ND

https://regcompliance.wordpress.com/2009/08/26/hipaa-privacy-rule-information-you-need-to-know/
https://creativecommons.org/licenses/by-nd/3.0/

#lfelc

fanalyzer
• This option enables a static analysis of the program flow that looks for paths through the code,

and issues warnings for problems found on them.
• This analysis is much more expensive than other GCC warnings.
• Enabling this option effectively enables some of these warnings:

Wanalyzer-double-fclose

Wanalyzer-double-free

Wanalyzer-exposure-through-output-file

Wanalyzer-file-leak

Wanalyzer-free-of-non-heap

Wanalyzer-malloc-leak

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html

#lfelc

Examples of –fanalyzer (-Wno-analyzer-double-free)

Credits to https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

This diagnostic warns for paths through the code in which a
pointer can have free called on it more than once.

#lfelc

Examples of –fanalyzer (-Wno-analyzer-malloc-leak)

Credits to https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

This diagnostic warns for paths through the code in which a
pointer allocated via malloc is leaked.

#lfelc

Examples of –fanalyzer (-Wanalyzer-unsafe-call-within-signal-handler)

Credits to https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

Dangerous fprintf
• fprintf can be a a security vulnerability.
• The problem is that fprintf determines how many

arguments it should get by examining the format
string.

• If the format string doesn't agree with the actual
arguments, you have undefined behavior which can
manifest as a security vulnerability.

• format string exploits: the attacker can perform
writes to arbitrary memory addresses.

https://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html

#lfelc

Examples of –fanalyzer (-Wanalyzer-unsafe-call-within-signal-handler)

Credits to
https://developers.redhat.com/blog/2020/
03/26/static-analysis-in-gcc-10/

#lfelc

Extra options

-fdiagnostics-path-
format=separate-events

-fdiagnostics-format=json

#lfelc

Next steps and real example where to use it
• CVE-2005-1689 (Kerberos computer-network

authentication protocol)

– Double free vulnerability in the krb5_recvauth
function in MIT Kerberos 5 (krb5) 1.4.1 and earlier
allows remote attackers to execute arbitrary code
via certain error conditions.

• It correctly identifies
the bug with no false
positives,

• Need to improve
warnings without
overwhelming.

Kerberos 5
(krb5) 1.4.1 GCC 10

fanalyzer

#lfelc

Next steps and real example where to use it

GCC new features
(profiling)

#lfelc

fprofile-partial-training
• fprofile-partial-training can now be used to inform the compiler that code

paths not covered by the training run should not be optimized for size.

Compile
(Instrumentation)

Profiled
execution

Compile
(optimization)

Function A

Function B

Function C

Function optimized for size

Function optimized for size

Function Optimized

function not executed
during training

function not executed
during the train

function executed
during the train

Example w/o fprofile-partial-training

#lfelc

fprofile-partial-training

Compile
(Instrumentation)

Profiled
execution

Compile
(optimization)

Function A

Function B

Function C Function Optimized

function not executed
during training

function not executed
during the train

function executed
during the train

Example w/ fprofile-partial-training

(ignored) Function A

(Ignored) Function B

#lfelc

Profile-guided optimization (PGO) for developers in a hurry

Compilers do performance optimizations by using known
heuristics, making most probable guesses about code
execution.

Image from Compilers: Principles, Techniques, and Tools[1] by Alfred V. Aho et all
Reference: https://developer.ibm.com/technologies/systems/articles/gcc-profile-guided-optimization-to-accelerate-aix-applications/

• A compiler may decide the branch to take based on where is it
located in a loop

• it may choose to inline a function based on its size.

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://dana-debardelaben.blogspot.com/2012/01/looking-ahead-but-not-too-far.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

#lfelc

Profile-guided optimization (PGO) for developers in a hurry

• To extract good performance out of a
program, it would be nice if
programmers could provide hints or
annotations to the compiler.

• PGO is a method used by compilers to
produce optimal code by using
application runtime data.

• Because this data comes directly from
the application, the compiler can make
much more accurate guesses.

This Photo by Unknown Author is licensed under CC BY-SA

http://commons.wikimedia.org/wiki/File:Youth-soccer-indiana.jpg
https://creativecommons.org/licenses/by-sa/3.0/

#lfelc

How does it work; phases?

Compile
(Instrumentation)

Profiled
execution

Compile
(optimization)

Instrumentation
• Produces an executable program that contains probes in each of

the basic blocks of the program.
• Each probe counts the number of times a basic block runs. If the

block is a branch, the probe records the direction taken by that
branch.

• $ gcc -fprofile-genrate=<profile_dir> source.c

This Photo by Unknown Author is licensed under CC BY-NC

http://www.allwhitebackground.com/crayons.html
https://creativecommons.org/licenses/by-nc/3.0/

#lfelc

How does it work; phases?

Compile
(Instrumentation)

Profiled
execution

Compile
(optimization)

Profiled execution
• When it is executed, the

instrumented program generates a
data file that contains the execution
counts for the specific run of the
program

This Photo by Unknown Author is licensed under CC BY-SA

http://commons.wikimedia.org/wiki/File:Youth-soccer-indiana.jpg
https://creativecommons.org/licenses/by-sa/3.0/

#lfelc

How does it work; phases?

Compile
(Instrumentation)

Profiled
execution

Compile
(optimization)

Optimization
• Information from the profiled execution of the program is

feedback to the compiler. This data is used to make a
better estimate of the program’s control flow. The
compiler uses this information to produce an executable
file, relying on this data rather than the static heuristics

• $ gcc -fprofile-use=<profile_dir> source.c

This Photo by Unknown Author is licensed under CC BY-NC

https://cassandrajohn.com/2016/07/26/first-rules-of-data-analysis/
https://creativecommons.org/licenses/by-nc/3.0/

#lfelc

What kind of optimizations should I expect?

• Function inlining
A technique where we inline high
frequency functions into one of the
calling functions to reduce function
call overheads.

• Dead Code
Elimination

Dead Code Elimination is an
optimization that removes code that
does not affect the program result. It
is important to differentiate:
• Dead code: code that is

executed but redundant, either
the results were never used or
adds nothing to the rest of the
program. Wastes CPU
performance.

• Unreachable code: code that
will never be reached
regardless of logic flow.
Difference is it's not executed.

Similar to –fdce but with runtime
information

A

B C

D E GF

70 30

80 20 90 10

• Block ordering
A compiler’s aim is to achieve call
locality or to perform minimum
amount of memory operations.
Functions which are tightly bound
should be collocated to minimize
instruction cache fetches.

A

B

C

D

A

C

D

B

Credits to : https://developer.ibm.com/technologies/systems/articles/gcc-profile-guided-optimization-to-accelerate-aix-applications/

#lfelc

Next steps and real example where to use it

If the application
behaves differently for
different data sets, it is
possible a regression
in performance.

For large applications
that are run frequently,
it is observed that
PGOs can prove to be
a significant source of
performance.

More info at Clear Linux python spec

Python* already provides an option for this:

*Other names and brands may be claimed as the property of others.

build Run
benchmark Re compile

https://github.com/clearlinux-pkgs/python3/blob/master/python3.spec

#lfelc

And if them profiled execution is in parallel ?

fprofile-reproducible

Control the level of reproducibility of
the profile gathered by -fprofile-
generate.

– With -fprofile-reproducibility=serial the
profile gathered by -fprofile-generate is
reproducible provided the trained
program behaves the same at each
invocation of the training run,

This Photo by Unknown Author is licensed under CC BY-ND

http://www.flickr.com/photos/huskyte/8519749145/
https://creativecommons.org/licenses/by-nd/3.0/

#lfelc

And if them profiled execution is in parallel ?

fprofile-reproducible
– With -fprofile-reproducibility=parallel-runs

collected profile stays reproducible
regardless of the order of streaming of the
data into gcda files.

– This setting makes it possible to run
multiple instances of instrumented
programs in parallel (such as with make -j).

– This reduces the quality of gathered data,
in particular of indirect call profiling.

This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/M1_highway_(Belarus)
https://creativecommons.org/licenses/by-sa/3.0/

GCC new features
(code health)

This Photo by Unknown Author is licensed
under CC BY-NC-ND

http://drferraro.ca/health-wellness/
https://creativecommons.org/licenses/by-nc-nd/3.0/

#lfelc

fno-common: Force good coding
• GCC now defaults to -fno-common. As a result, global variable accesses are more efficient on

various targets.
• In C, global variables with multiple tentative definitions now result in linker errors.
• With -fcommon such definitions are silently merged during linking.

https://gcc.gnu.org/bugzilla/show_bug.cgi%3Fid=85678

GCC
new features
(new instructions)

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://neurocritic.blogspot.com/2014/06/the-neuroscience-of-future.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

#lfelc

New Targets and Target Specific Improvements: IA-32/x86-64

• GCC now supports the Intel® architectures
code named Cooper Lake & Tiger Lake
through

-march=cooperlake/tigerlake.

• If the Cooper Lake switch enables the
AVX512BF16 ISA extensions for BFLOAT16

#lfelc

The dynamic range of bfloat16 is greater than that of fp16

• The bfloat16 range is useful for things like gradients that can be outside the dynamic range of
fp16 and thus require loss scaling; bfloat16 can represent such gradients directly.

• In addition, you can use the bfloat16 format to accurately represent all integers [-256, 256],
which means you can encode an int8 in bfloat16 without loss of accuracy.

In order to use BF16 efficiently, it must be implemented in hardware in a unified way. The new Cooper Lake
instruction provides two flavors of new instructions for this:

● FMA unit with two BF16 input operands and one FP32 input/output operand
● Conversions between FP32 and BF16

VCVTNE2PS2BF16 Conversions Convert Two Packed Single Data to
One Packed BF16 Data

VCVTNEPS2BF16 Conversions Convert Packed Single Data to Packed
BF16 Data

VDPBF16PS FMA Dot Product of BF16 Pairs
Accumulated into Packed Single
Precision

All of them can be executed in 128-bit, 256-bit, or 512-bit mode, so software developers
can pick up one of a total of nine versions based on their requirements.

The list of Intel® AVX512 BF16 Vector Neural Network Instructions includes:

Intel® AVX512 refers to Intel® Advanced Vector Extensions 512

FMA with BFLOAT16 (VDPBF16PS)

This unit takes two BF16 values and
multiply-adds (FMA) them as if they
would have been extended to full
FP32 numbers with the lower 16 bits
set to zero.

The BF16*BF16 multiplication is
performed without loss of
precision; its result is passed to a
general FP32 accumulator with
the aforementioned settings.

Example with code in C (full example)

https://github.com/VictorRodriguez/avx-basics/blob/master/src/basic_bfloat.c

DEMO

How to manage the
new toolchain?

#lfelc

Build GCC

1

2

3

#lfelc

Build GCC

Source at : https://github.com/VictorRodriguez/hobbies/blob/master/personal_scripts/build-gcc.sh

4

5

#lfelc

More info at
http://www.linuxfromscratch.org/lfs/view/development/chapter06/gcc.html

This Photo by Unknown Author is licensed under CC BY-SA

http://unitic.wikidot.com/unitic1
https://creativecommons.org/licenses/by-sa/3.0/

#lfelc

Minimal image packages build process

New GCC

List of
packages

Package rebuild
with new GCC

Mock local repo

Mock upstream
repo

Compile ok ?

Package rebuild
with new GCCPackage rebuild

with new GCC

Debug time

Old GCC

Old packages
Old packages

Old packages

minimal packages to build a linux system , taken from :
http://www.linuxfromscratch.org/lfs/view/6.6/index.html
systemd is exrta, but is evil when gcc change :)

#lfelc

Where can I ask for help?

• GCC 10 provides a porting_to gcc10 documentation
• GCC help ML
• GLIBC ML for packages problems

Image by Gerd Altmann from Pixabay

https://gcc.gnu.org/gcc-10/porting_to.html
https://gcc.gnu.org/pipermail/gcc-help/
https://pixabay.com/users/geralt-9301/%3Futm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=792920
https://pixabay.com/%3Futm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=792920

#lfelc

Summary

This Photo by Unknown Author is licensed under CC BY-SA-NC

The toolchain is simply tools to build
software (compiler, assembler, linker,
libraries, and a few useful utilities).

This is NOT true

The toolchain is a set of optimized
tools to build better software

Let’s use it ….

http://virtualmarketingofficer.com/2009/08/07/sustainable-and-valuable-social-media-strategy-part-ii/tool-box-small/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No product or
component can be absolutely secure. Check with your system manufacturer or retailer or learn more at
intel.com.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others.

© 2020 Intel Corporation

