€mbedded Linux
Conference

North America

Toolchains in the New Era

How to Update Safely

SW Eng. Victor Rodriguez

#ifelc @twitterhandle

GNU compiler community do a lot of work per developer
How much in terms of commits per developer?

Number of commits per developer over git history

250

200

150

100

50

Commits per developer THE
_ L LINUX
BGCC MLlinux Kemel FOUNDATION

* Information taken from gcc and linux githubs repos

https://github.com/gcc-mirror/gcc
https://github.com/torvalds/linux

— What’s new?
* Security

* Profiling
* New instructions
— How to manage the new toolchain?
 Build and install
« System rebuild
« Common problems
* How to fix them?

THE

LINUX

L FOUNDATION

GCC new features

(security)

This Photo by Unknown Author is licensed under

https://regcompliance.wordpress.com/2009/08/26/hipaa-privacy-rule-information-you-need-to-know/
https://creativecommons.org/licenses/by-nd/3.0/

fanalyzer

« This option enables a static analysis of the program flow that looks for paths through the code,
and issues warnings for problems found on them.

« This analysis is much more expensive than other GCC warnings.
- Enabling this option effectively enables some of these warnings:

Wanalyzer-double-fclose
Wanalyzer-double-free
Wanalyzer-exposure-through-output-file

Wanalyzer-file-leak

Wanalyzer-free-of-non-heap

THE

L LINUX

FOUNDATION

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html

Examples of —fanalyzer (-Wno-analyzer-double-free)

This diagnostic warns for paths through the code in which a
pointer can have free called on it more than once.

gcc test.c —fanalyzef
test.c: In function :main-’:
test.c:7:2: warning: double-:<free’ of :<ptr:-

(1) first <free’ here
free(ptr);

first <free’r was at (1)

(2) second ‘< free’ here;

THE

L LINUX

FOUNDATION

Credits to https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

Examples of —fanalyzer (-Wno-analyzer-malloc-leak)

This diagnostic warns for paths through the code in which a
pointer allocated via malloc is leaked.

test_2.c: In function <test’:
test_2.c:8:1: warning: leak of ‘p’
3 |}

|
] A
‘test’: events 1-2
6 |
|
| I
| (1) allocated here
7| /¥ do stuff */
I3
| ~
|1
| (2) ‘p’ leaks here; was allocated at (1)
test_2.c:8:1: warning: leak of FILE ‘£
}

A

e
|
|
|
|
|
|
|
|
|
|
|

8

|
|
‘test’: events 1-2

|
|
| |
| (1) opened here

}
|
C

|
|
|
| (2) ‘£ leaks here; was opened at (1)

THE

L FOUNDATION
Credits to https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/

Examples of —fanalyzer (-Wanalyzer-unsafe-call-within-signal-handler)

Dangerous fprintf

fprintf can be a a security vulnerability.

The problem is that fprintf determines how many
arguments it should get by examining the format
string.

If the format string doesn't agree with the actual
arguments, you have undefined behavior which can
manifest as a security vulnerability.

format string exploits: the attacker can perform
writes to arbitrary memory addresses.

$./a.out "AAAA%p %p %p %p %p %p %p %p %p Ep"

#include<stdio.h>

int main(int argc, char** argv) {
char buffer[100];
strncpy(buffer, argv([1l], 100);
printf (buffer);
return 0;

AAAAOxffffddeB 0x64 O0xf7ecl289 Oxffffdbef Oxffffdbee (nil) Oxffffdcd4 Oxffffdc74 (nil) 0x41414141

LinuX
Credits to https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10/ B d RURAON

https://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html

Examples of —fanalyzer (-Wanalyzer-unsafe-call-within-signal-handler)

dio.h>
<signal.h>

void custom_logger(const char *msg)
I
y

- fprintf(stderr, "LOG: %s", msg);
.

static void handler(int signum)

{
custom_logger("got signal");

int main(int argc, const char *argv)

custom_logger("started");
SIGINT, handler);

Credits to

THE
https://developers.redhat.com/blog/2020/ L k)!JNNDngN
03/26/static-analysis-in-gcc-10/

Extra options

-fdiagnostics-path- kind: warni
locations:

format=separate-events -

1

finish: {

line: .

-fdiagnostics-format=json file: test.c

column:

_I‘)
caret: L
Line: 7,
. ile:
gcc test.c -fanalyzer {?{')
test.c: In function ‘main-: coLumn.
test.c:7:2: warning: double-<free: of <ptr: [CWE-415]
3
J
path: [
1
location:
| Line:
(1) first :free' here file: test.
free(ptr); column: 2
}
description: first \u2018free\u2019 here
depth: 1,
function: mair

second ‘free' here; first ‘free' was at

Next steps and real example where to use it

« CVE-2005-1689 (Kerberos computer-network
authentication protocol)

— Double free vulnerability in the krb5_recvauth
function in MIT Kerberos 5 (krb5) 1.4.1 and earlier
allows remote attackers to execute arbitrary code
via certain error conditions.

l ‘ * It correctly identifies
4: - @ the bug with no false
— positives,
* Need to improve

warnings without
overwhelming.

THE

L LINUX

FOUNDATION

Next steps and real example where to use it

In file included from ../../../../src/lib/krb5/krb/recvauth.c:31:

eol e/ /../8xc/lib/krb5/krb/recvauth.c: In function ‘recvauth_common’:

eol e/l /8xec/1lib/krb5/krb/../../../include/k5-int.h:1670:25: double-‘free’ of
1670 #define krb5 xfree(val)

eelei/oo/../8xc/lib/krb5/krb/recvauth.c:82:6: in expansion of macro ‘krb5 xfree’
(inbuf.data);

‘krb5_recvauth _version’: events 1-2 -
Index: lib/krb5/krb/recvauth.c

(krbs context Context, S N N N N N N N N N NN N N N N NN N N N N N NN NN

RCS file: /cvs/krbdev/krb5/src/lib/krb5/krb/recvauth.c,v
retrieving revision 5.38

entry to ‘krb5_recvauth version’ diff -c -r5.38 recvauth.c
...... **% 1ib/krb5/krb/recvauth.c 3 Sep 2002 01:13:47 -0000 5.38
return ~== 1lib/krb5/krb/recvauth.c 23 May 2005 23:19:15 -0000

*hhkhkhkkhkhkhhkdhhhr

*kk T6,B2 *kkk
if ((retval = krb5_read message(context, fd, &inbuf)))
return(retval);
if (strcmp(inbuf.data, sendauth_version)) ({
- krb5 xfree(inbuf.data);
problem = KRB5_SENDAUTH_BADAUTHVERS;

|

|

| calling ‘recvauth common’ from ‘krb5_re
| .

|

}
krb5 xfree(inbuf.data);
-—= 76,81l ===
khkhkhkkhkhkhkhkhehhdx
*%k 90,96 *kk*
if ((retval = krb5 read message(context, fd, &inbuf)))
return(retval);
if (appl_version && strcmp(inbuf.data, appl version)) ({
- krb5_ xfree(inbuf.data);
if (!problem)
problem = KRB5 SENDAUTH_ BADAPPLVERS;

}
——= 89,94 —-em

GCC new features @

(profiling) /
L JLinux

OOOOOOOOOO

fprofile-partial-training

« fprofile-partial-training can now be used to inform the compiler that code
paths not covered by the training run should not be optimized for size.

Example w/o fprofile-partial-training

Compile Profiled Compile
execution

| Y

I ya I

function not executed i imi i
during training

J function not executed L
during the train

N

function executed
during the train

THE

L LINUX

FOUNDATION

fprofile-partial-training

Example w/ fprofile-partial-training

Compile Profiled Compile
execution

N

- I

function not executed

during training

function not executed

during the train

I

function executed

during the train

b

s

THE

L LINUX

FOUNDATION

Profile-guided optimization (PGO) for developers in a hurry

Compilers do performance optimizations by using known t 1
. . . poeition = initial + rate * 60
heuristics, making most probable guesses about code e
) exical Analyzer j
execution. (4,1 (=) (34,2) 4) 64,3 (4 (0
1

[Syntax Analyzer 3

« A compiler may decide the branch to take based on where is it <id,1>/=?+\
. ositiion| .-+ (id, 2 ¥l
located in a loop 2 Mhnicigr [o w

3 | rate

* it may choose to inline a function based on its size. [Semendc Analyeer |

. \
SYMBpL TABLE (d, 17" ANy
Gd, 2y .
(id,3)/ inttofloat
|
60
‘ Intermediate Code Generator I

—

for (int 1 = @; i < 100000; ++i) {
t1 = inttofloat(60)

// Primary loop bk

for (int ¢ = @; c < arraySize; ++c) { - _1223'_ -==
. g Code Optimizer

if (datalc] >= 128) gL oo ¥

1 t1 = id3 % 60.0 |

sum += datalc]; P e Al P

} | Code Generator

LDF R2, id3
} MULF R2, R2, #60.0
LDF R1, id2

ADDF Ri, Ri, R2
STF id1, Rt

THE

This Photo by Unknown Author is licensed under CC BY-NC-ND I LI N ux

Image from Compilers: Principles, Techniques, and Tools[1] by Alfred V. Aho et all FOUNDATION
Reference: https://developer.ibm.com/technologies/systems/articles/gcc-profile-guided-optimization-to-accelerate-aix-applications/

https://dana-debardelaben.blogspot.com/2012/01/looking-ahead-but-not-too-far.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Profile-guided optimization (PGO) for developers in a hurry

- To extract good performance out of a
program, it would be nice if
programmers could provide hints or
annotations to the compiler.

« PGO is a method used by compilers to
produce optimal code by using
application runtime data.

- Because this data comes directly from
the application, the compiler can make
much more accurate guesses.

THE

This Photo by Unknown Author is licensed under CC BY-SA I Ll N ux

FOUNDATION

http://commons.wikimedia.org/wiki/File:Youth-soccer-indiana.jpg
https://creativecommons.org/licenses/by-sa/3.0/

How does it work; phases?
, Compile Profiled Compile
\(Instrumentation)] i i

Instrumentation

* Produces an executable program that contains probes in each of
the basic blocks of the program.

» Each probe counts the number of times a basic block runs. If the
block is a branch, the probe records the direction taken by that
branch.

e$ gcc -fprofile-genrate=<profile_dir> source.c

THE

L LINUX

This Photo by Unknown Author is licensed under CC BY-NC FOUNDATION

http://www.allwhitebackground.com/crayons.html
https://creativecommons.org/licenses/by-nc/3.0/

How does it work; phases?

Compile Profiled Compile
execution

Profiled execution

 When it is executed, the
Instrumented program generates a
data file that contains the execution

counts for the specific run of the
program

THE

L LINUX

This Photo by Unknown Author is licensed under CC BY-SA FOUNDATION

http://commons.wikimedia.org/wiki/File:Youth-soccer-indiana.jpg
https://creativecommons.org/licenses/by-sa/3.0/

How does it work; phases?

Compile Profiled Compile
(optimization)

Optimization

* Information from the profiled execution of the program is
feedback to the compiler. This data is used to make a
better estimate of the program’s control flow. The
compiler uses this information to produce an executable
file, relying on this data rather than the static heuristics

e $ gcc -fprofile-use=<profile dir> source.c

THE

L LINUX

FOUNDATION

This Photo by Unknown Author is licensed under CC BY-NC

https://cassandrajohn.com/2016/07/26/first-rules-of-data-analysis/
https://creativecommons.org/licenses/by-nc/3.0/

What kind of optimizations should | expect?

* Function inlining

A technique where we inline high
frequency functions into one of the
calling functions to reduce function
call overheads.

7OQ 30

80

- Block ordering

A compiler’s aim is to achieve call
locality or to perform minimum
amount of memory operations.
Functions which are tightly bound
should be collocated to minimize
instruction cache fetc" -~

- Dead Code

Elimination

Dead Code Elimination is an
optimization that removes code that
does not affect the program result. It
is important to differentiate:

RN--d ~~d-- code that is

func_a() ut redundant, either
1 were never used or
o 1g to the rest of the
if (condition = TRUE) lastes CPU
i e.
2 elsec?ll‘func‘b() lle code: code that
call_func_c() e reached
3 of logic flow.
¥ s it's not executed.
func_b() but with runtime
: func_d ()

Credits to : https://developer.ibm.com/technologies/systems/articles/gcc-profile-guided-optimization-to-accelerate-aix-applications/

int foo(int x, int y) {
int a = x + y;
a=1;
return a;

}

Next steps and real example where to use it

Python* already provides an option for this:

If the application
behaves differently for
different data sets, it is %configure %python_configure_flags --enable-optimizations

%ngi:f)éerrﬁarﬁggession make profile-opt %{?_smp_mflags}
%make_install

For large applications
that are run frequently,
it is observed that

PGOs can prove to be
a significant source of
performance.

THE

LINUX

More info at Clear Linux thhOﬂ spec *QOther names and brands may be claimed as the property of others. L FOUNDATION

https://github.com/clearlinux-pkgs/python3/blob/master/python3.spec

And if them profiled execution is in parallel ?

fprofile-reproducible

Control the level of reproducibility of
the profile gathered by -fprofile-
generate.

— With -fprofile-reproducibility=serial the
profile gathered by -fprofile-generate is
reproducible provided the trained
program behaves the same at each
invocation of the training run,

This Photo by Unknown Aut

hor is license:

du

nder CC BY-ND

L

THE

LINUX

FOUNDATION

http://www.flickr.com/photos/huskyte/8519749145/
https://creativecommons.org/licenses/by-nd/3.0/

And if them profiled execution is in parallel ?

|nl

fprofile-reproducible

— With -fprofile-reproducibility=parallel-runs
collected profile stays reproducible :
regardless of the order of streaming of the
data into gcda files.

— This setting makes it possible to run
multiple instances of instrumented
programs in parallel (such as with make -j).

— This reduces the quality of gathered data,
in particular of indirect call profiling.

THE

L LINUX

FOUNDATION

This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/M1_highway_(Belarus)
https://creativecommons.org/licenses/by-sa/3.0/

R
GCC new features | J(‘*’

(code health)

http://drferraro.ca/health-wellness/
https://creativecommons.org/licenses/by-nc-nd/3.0/

fno-common: Force good coding

* GCC now defaults to -fno-common. As a result, global variable accesses are more efficient on
various targets.

* In C, global variables with multiple tentative definitions now result in linker errors.
* With -fcommon such definitions are silently merged during linking.

Bug 705764 depends on 399 open bugs:
cee will reject multiple definition of global variables starting from gee-10: view as bug st

{@3705764: [TRACKER] Packages failing with -fno-common ¥

//a.c ¥706000: net-miscinetworkmanager: Fails to compile with -fno-common ¥
5 ¥706350: net-miscisipsak-0.9.6_p1-r2 : fails to build with -fno-common or gec-10 ¥
int a = 42;) ; -
— — 4706396: www-servers/gatling-0.15 : fails to build with -fao-common or gec-10 ¥
#706398: sys-fabric/infinipath-psm-3.2 : fals to build with -fno-common or gec-10 ¥
// main.c & 2 scibi phylipnew-3.69.660 : fails to build with -fno-common or gee-10 ¥
50 o 706448 games-miscisdijoytest-11102003 : fals to build with -fo-common or gec-10 ¥
i
) . ¥706450: sci-biology/blat-34-r2 : fails to build with -fno-common or gec-10 ¥
int main(){} 706460: media-sound/chordii-4.5.3 : fails to build with -fno-common or gec-10 ¥

¥706516: app-mobilephone/kannel-1.5.0-r4 : fails to build with -fno-common or geo-10 ¥
¥706518: games-misc/typespeed-0.6.5-r1 : fais to build with -fno-common or geo-10 ¥
d#706522: x11-misc/xiractint-20.04_p14 : fails to build with -fno-common or gec-10 P
#706530: sci-biology/mcl-14.137 : fails to build with -fno-common or gce-10 P

A 4

The fix (source changes, preferred) The -fcommon workaround (discouraged)

The fix is simple: explicitly mark declarations as such and avoid multiple definitions: src_configure() {
discouraged, source change fix is preferred
//a.c append-cflags -fcommon # https://link/to/upstream/bug/report
cutyaiyl2; econf ...
// main.c } THE

extern int a; // was 'int a;' L LINUX

int main(){} FOUNDATION

https://gcc.gnu.org/bugzilla/show_bug.cgi%3Fid=85678

new features
(new instructions)

GCC

n u
This Photo by Unknown Author is licensed under CC BY-NC-ND

http://neurocritic.blogspot.com/2014/06/the-neuroscience-of-future.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

New Targets and Target Specific Improvements: 1A-32/x86-64

6.63 103
GCC now supports the Intel® architectures M\’.’ T
_ Tantissa Exponent
code named Cooper Lake & Tiger Lake
through s bt
A~
0 -101010101 x 010101
H) mm:t'iasa . exponent
-march=cooperlake/tigerlake. " S
4 21 . 1 2 1
. 2 1 e =
-« If the Cooper Lake switch enables the I et D

AVX512BF16 ISA extensions for BFLOAT16

THE

LINUX

L FOUNDATION

The dynamic range of bfloat16 is greater than that of fp16

) exponent fraction
25

8 bits 7 bits
s|e e e e lelelelemImimim|m]m]|m

bfloat1é
range: ~1e~*® to ~3e*®

8 bits 23 bits

gcr:g::s-ie'”to%e” SEEE’EEE’E’EMMMMMMM"'MMMMM
5 bits 10 bits
gﬁg;jfspe—atoé.se“ s|e e € E EMIMM(M[MIM[M[M| MM

* The bfloat16 range is useful for things like gradients that can be outside the dynamic range of
fp16 and thus require loss scaling; bfloat16 can represent such gradients directly.
* In addition, you can use the bfloat16 format to accurately represent all integers [-256, 256],

which means you can encode an int8 in bfloat16 without loss of accuracy.
THE

L LINUX

FOUNDATION

In order to use BF16 efficiently, it must be implemented in hardware in a unified way. The new Cooper Lake
instruction provides two flavors of new instructions for this:

e FMA unit with two BF16 input operands and one FP32 input/output operand
e Conversions between FP32 and BF16

The list of Intel® AVX512 BF16 Vector Neural Network Instructions includes:

VCVTNE2PS2BF16 Conversions Convert Two Packed Single Data to
One Packed BF16 Data

VCVTNEPS2BF16 Conversions Convert Packed Single Data to Packed
BF16 Data

VDPBF16PS FMA Dot Product of BF16 Pairs
Accumulated into Packed Single
Precision

All of them can be executed in 128-bit, 256-bit, or 512-bit mode, so software developers
can pick up one of a total of nine versions based on their requirements.

Intel® AVX512 refers to Intel® Advanced Vector Extensions 512

FMA with BFLOAT16 (VDPBF16PS)

Src1 (BF16)

Src2 (BF16)

Srcdest (FP32)

\ 4

CVT BF16 to FP32
Out[31:16] = In[15:0]
Out[15:0] = 16b'0

CVT BF16 to FP32
Out[31:16] = In[15:0]
Out[15:0] = 16b'0

FP32 FMA
DAZ/FTZ==1, RNE

Srcdest (FP32) R

BFP10002

This unit takes two BF16 values and
multiply-adds (FMA) them as if they
would have been extended to full

FP32 numbers with the lower 16 bits
set to zero.

The BF16*BF16 multiplication is
performed without loss of
precision; its result is passed to a
general FP32 accumulator with
the aforementioned settings.

Example with code in C (full example)

/* __m128bh _mm_cvtneps_pbh (__m128 a)

Convert packed single-precision (32-bit) floating-point elements in a to
packed BF16 (16-bit) floating-point elements, and store the results in dst.
*/

result = _mm_cvtneps_pbh(A);

/* __m128bh _mm_cvtne2ps_pbh (__m128 a, __ml128 b)

Convert packed single-precision (32-bit) floating-point elements in two
vectors a and b to packed BF16 (16-bit) floating-point elements, and store
the results in single vector dst. x/

result = _mm_cvtne2ps_pbh(A,B);

/* __m128 _mm_dpbfl6_ps (__m128 src, __ml28bh a, __m128bh b)

Compute dot-product of BF16 (16-bit) floating-point pairs in a and b,
accumulating the intermediate single-precision (32-bit) floating-point
elements with elements in src, and store the results in dst.

*/

result = _mm_dpbf16_ps(A,A,B);

https://github.com/VictorRodriguez/avx-basics/blob/master/src/basic_bfloat.c

DEMO

/* __m128 _mm_dpbfl16_ps (__m128 src, __m128bh a, __m128bh b)

Compute dot-product of BF16 (16-bit) floating-point pairs in a and b,
accumulating the intermediate single-precision (32-bit) floating-point
elements with elements in src, and store the results in dst.

*/

result = _mm_dpbf16_ps(A,A,B);

a = 16.000000 result mm_dpbflét ps(A,A,B):
b = 6.0000600 .Booe0o0o
i 0.000000
.BBBo0o0o
.BBBooo

@
7
@
@

How to manage the
new toolchain?

OOOOOOOOOO

Build GCC

1 tar -xf gcc-${GCC_VERSION}.tar.bz2

download the prerequisites
2 cd gcc—-${GCC_VERSION}
./contrib/download_prerequisites

create the build directory
3 cd ..

mkdir gcc-build

cd gcc-build

THE

L LINUX

FOUNDATION

Build GCC

build
4 ../gcc-${GCC_VERSION}/configure \
——prefix=${INSTALLDIR} \
——enable-shared \
—-with-system-zlib
——enable-threads=posix \
——enable—__cxa_atexit \
——enable-clocale=gnu \
-—enable-languages="c, c++, fortran" \
&& make \
> && make install
Source at : https://github.com/VictorRodriguez/hobbies/blob/master/personal_scripts/build-gcc.sh L :L;IEE%}I\.TIIO)S

Notes

—enable-shared ——enable-threads=posix ——enable-__cxa_atexit:
These parameters are required to build the C++ libraries to published standards.

—enable-clocale=gnu:
This parameter is a failsafe for incomplete locale data.

——disable-multilib:
This parameter ensures that files are created for the specific
architecture of your computer.
This will disable building 32-bit support on 64-bit systems where the
32 bit version of libc is not installed and you do not want to go
through the trouble of building it. Diagnosis: "Compiler build fails
with fatal error: gnu/stubs-32.h: No such file or directory"

—with-system-zlib:
Uses the system zlib instead of the bundled one. zlib is used for
compressing and uncompressing GCC's intermediate language in LTO (Link
Time Optimization) object files.

——enable-languages=all More info at
)) http://www.linuxfromscratch.org/Ifs/view/development/chapter06/gcc.html
—enable-languages=c, c++, fortran,go,objc,obj—c++:

This command identifies which languages to build. You may modify this THE

command to remove undesired language L LINUX

This Photo by Unknown Author is licensed under CC BY-SA FOUNDATION

H OH OH R O K OB OB K R OH R K OHE K K KR WK K OHE K K K R

http://unitic.wikidot.com/unitic1
https://creativecommons.org/licenses/by-sa/3.0/

Minimal image packages build process

!
"gee" \
"linux" \
"glibc™\
"tcl"\
"expect"\
""dejagnu"\
"ncurses"\
"bash"\
"bzip2"\
"coreutils"\
"diffutils"\
""gawk"\
""gettext"\
"grep"\
"gzip"\
"m4'"\
"make"\
"patch"\
"perl"\
"sed"\
"tar'"\

"texinfo"\
"autoconf"\
"automake" \
"bison"\
"e2fsprogs"\
"expect"\
"file"\
"findutils" \
"flex" \
"gdb" \
"groff" \
"ncurses" \
"patch" \
"perl" \
"pkg-config" \
"tcl" \

"nss" \
"systemd" \

packages

minimal packages to build a linux system , taken from :
http://www.linuxfromscratch.org/Ifs/view/6.6/index.html
systemd is exrta, but is evil when gcc change :)

THE

L LINUX

FOUNDATION

Where can | ask for help?

« GCC 10 provides a porting_to gcc10 documentation
« GCC help ML
- GLIBC ML for packages problems

Image by Gerd Altmann from Pixabay

https://gcc.gnu.org/gcc-10/porting_to.html
https://gcc.gnu.org/pipermail/gcc-help/
https://pixabay.com/users/geralt-9301/%3Futm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=792920
https://pixabay.com/%3Futm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=792920

The toolchain is simply tools to build
software (compiler, assembler, linker,
libraries, and a few useful utilities).

This is NOT true

The toolchain is a set of optimized J
tools to build better software \/

Let’s use it

THE

L LINUX

FOUNDATION
This Photo by Unknown Author is licensed under CC BY-SA-NC

http://virtualmarketingofficer.com/2009/08/07/sustainable-and-valuable-social-media-strategy-part-ii/tool-box-small/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Embedded Linux
Conference

North America

Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No product or
component can be absolutely secure. Check with your system manufacturer or retailer or learn more at
intel.com.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others.

© 2020 Intel Corporation

