C++ tor Real-Time
Safety-Critical Linux Systems

Robin Rowe & Gabrielle Pantera
Open Source Summit +

Embedded Linux Conference Europe 2020 \
Tuesday, October 27th, 2020

Aarodynnmic

CHE oWy
Craft Puni

DARPA Humanoid Robots FAIRPLEX TN ~~m

=—-:'—-t-' E—s Ha_-‘——- "—*—:-“,

/ﬁf‘“‘x‘\ 3 ’ e i
IFﬁIRPLexm_-. .RPH.MFAM —— l

LY ———— n:"‘ P =—r——
- 'ﬁﬂl A » ‘h

Bugs and Uptime

* Fewer lines of code => fewer bugs
* Bug clusters, bugs tend to group
* Technical debt
* Timing errors
* At Google, 70% of failures happen when
releasing a new version of code
* To reach nine 9s we must bank reliability
* Nine 9s is...
1/10 the time of the blink of an eye

Availability %

90%

99%

99.9%
99.99%
99.999%
99.9999%
99.99999%
99.999999%

99.9999999%

Nines

1
2
3
4
5
6
7
8

Safety Standards

*|SO 9001 QA Process

*|SO IEC 23360 Linux LSB

*|SO 13485 Medical Software

*D0-178 Aviation Software

*|SO 26262 Automotive Software

*DOT ITS ATC Automotive Traffic Light Softwe
*MISRA C

*Future: ISO 56007 Innovation Idea Managei

Process Types

*Agile
*Waterfall
*Unstructured

What process do we have?

Unstructured Process Indicators m

* No specific goals ﬂ

* Top-down directives out of sync with conditions on the grounc
* Deadlines and milestones seem incomprehensible to team

* No lessons learned, keep trying harder with the same plan

* Death marches, deadlines slide as the plan remains unchange«
* Personal baggage, team stressed out, mentally checked out, o
* Expectations of project failure voiced at meetings

* Managers consumed with putting out fires and reproaching te
* Team doesn’t know what the managers are doing

* Budget out of control, binge spending, illogical cost-cutting

Waterfall Process Indicators

* Top-down, business requirements provided by leader
* Requirements analysis and written specifications

* Preliminary Design Review, Critical Design Review

* Charge numbers, Bug tracking

* Microsoft Project, Gantt charts

* Daily team meetings discuss what happened yesterday

* Managers spend much of their time absent for planning meet;
* Rigid plans that demand sticking to the plan no matter what

* Big bang finished deliverable, deadlines tend to slip

Robert Overc

Jjumping Nia
great plan e

AL\GN

M&ﬂi&?sj(v '(jt‘)“_'f p 1\9 M ’DQ\J cnus*rmau'r.':}& o

@INDVDUALS AND INTERACTIONS
A TS

LT] over PROESSES A
W 0D POWER
..L‘:_‘:J:=I R RNNE DOGUNENTION e _

(™ @0usoMeR: (OUABORIION ONEF
(ONTRACT NEGOTIKTION

@RESFDND‘NQ “‘D C"\AN&E' Ok ENERGIZE
F’OWINQ P\'PL&N PEOPLE

Agile condensed, by agilesista.com Image: Jurgen Appelo, Flic

Agile Process Indicators Leadership

* User stories

* Sprints and retrospectives
* Release early and often

* Pair programming

* Kanban boards

* Meetings are forward-looking or retrospectives

* Cloud-based project management
* JIRA
* Git

Why Do We Like C++?

* Performance: 10x faster typical

* 20 million C++ programmers

* Object-oriented design safety

* Reliability: extensive set of tools for debug/test
* C++ leads motion picture visual effects, VR and autonon
* C++ everywhere: Windows, MacOS, Linux, iOS, Android

systems, loT, cloud, aerospace, Al, databases

Object-Oriented Design

“The most important single aspect of software
development is to be clear about what you are
trying to build.” -- Bjarne Stroustrup

* Software that snaps together like Legos
* Nouns are classes, verbs are functions
* Encapsulation hides data from code that shouldn’t change it
* C++ is as easy as PIE:

* Polymorphism

* Inheritance

* Encapsulation
* Elegant design simplicity is what’s left after removing complex

Embedded Systems Design

* Code design: think small, think fast

* Avoid the heap after main()

* Avoid termination, and therefore exceptions
* If rebooting is feasible, use a Highlander for auto-restart
* Avoid implicit initialization of static objects before main(),
* Bring-up: initialize explicitly in main()

* Avoid senseless optimizations, profile and test

* Avoid risky coding practices

* Use type-safety, encapsulation, be const-correct

Safety-Critical C++ Concepts

LA

* Encapsulation

* Memory Management
* Thread Management

* Hard and Soft Real-time
* Static Analysis

* Single codebase on Linux, Windows, Mac, embedded
* Audit, Simulation, Playback

* SQA, Unit and Regression

C++ Type-Safety

* Locks out incompatible code

* Typical type errors will be found
at compile time

* A major way of static checking

* We can still cast, when we must

* sizeof(ptr) unknowable

* Use intptr_t type

YOU'RE NOT
MY TYPE...

HOW THE TITANIC WO

C++ Encapsulation

* Watertight compartments e
* Classes and objects
* private
* protected
* public
* Encapsulation is a form of data hiding
* Encapsulation can ensure consistency of state
* Don’t use inheritance where you mean encapsulation
* const is also a form of encapsulation

C++ Memory Management

* Stack: Temporary, Fixed Size

* Failure consequence is stack overflow, a crash
* Static: Forever, fixed size

* Failure consequence is program too big to load et
* Heap: Can vary in time and space Don’t tell anyone.

* Failure consequence is null pointer or exception I actually forget Ic

* Fragmentation possible

* Memory leak possible

* unique pointer<> |eaves no garbage to collect

* shared pointer<> useful for removing leaks in legacy code

C++ Concurrency

* Message queues

* Threads, join () or detach () 2
* Mutex gp
* Locks

* Condition Variable

* Lockfree

* Double-buffering
*volatile and <atomic>

C++ Pointers

* Avoid garbage by using unique pointer<>
* Avoid wild pointers by pointing to nullptr in constructor

* Avoid dangling pointers by nulling after release

* Hide pointers by making them private

* Where a pointer could never be null, use references instead

* Avoid unintended modifications by using const

* Trace in a debugger all code you write that does pointer math

C++ Casting

* We don’t want any, but sometimes...

* Indispensable for coping with legacy design issues
* C-style casts: (int) x

* C++ constructor casts: 1nt (x)

*const cast<>to cast away const

*static _cast<>islike a C cast
reinterpret cast<>made for void casts
* dynamic_ cast<>returns 0O if fails, for up-casts
* Use function templates to block integer casts

C++ Exceptions, Don’t Dﬂ

FA

*signal in a type-safe way

‘return false is 10x faster and easier to trac

* Use to add simplistic error handling to legacy co

* C++ exceptions are termination-based, if a secor
throw happens before the first throw is caught, |

*|If we don’t like new because it can be slow and
terminate unexpectedly, we don’t like throw fo
same reasons

Testing Methods

*Tracing
* Unit

* Stress 5 \./\d
* Regression e

* Monkey

*Screen scraping //

* Keyboard/mouse macros C
/

¢
* Catch library

C++ Traps

* Infinite loop

* Recursion

* Casts

* Wild pointers

* Segfault, division by zero, FPE, fatal cache miss
* |nitialization before main()

* Complexity and obfuscation

* Cohesion vs. spaghetti code

Agile Safety-Critical Mindset

“How could you not select a guy who wears a
woman's hair band for sunglasses?”

“But, seriously, Geordi saved the Enterprise from
certain doom in countless episodes. Sure, so did
Scotty. But Geordi did not whine about it like
Scotty, ‘Captain, I'm giving her all she's got... She
can't take much more.” Nope. Geordi just got 'er
done. As ridiculous as that visor Geordi sported
looked, it enabled him to see things that other
crew members could not.”

LaVar Burton

LaVar Burto

A charmingl
session in tf

Real Life C++ Examples

Literally Everything Depends on C++
Real-Time Systems

Safety-Critical Systems

Embedded Systems

Financial Systems

Critical Infrastructure

Let's Look at Some Systems |'ve Touched...

Mt Huasha

Barbie Vlog # 19 | Cosplay Costumes | Barbie

i

P o) 005/1:25

CALIDUTY

S
]

wasn | Casino Gaming

m Welcome Avatartest Get Chips To Lobby Fullscreen Stand Up
\ Level: 1 o~ X \T
Balance: $999,946,085 2 f’{r ®

w Welcome PrinceiPad Get Chips To Lobby Fullscreen Stand Up

Wi~ Level: 1 P xk (Y \T

s
Balance: $9,000,011,429 +2) f ‘
- 448448

Plaver Options Plaver Actions All
O I Auto Muck [5’3_3;": :
M sitout gﬁf’;"': F
Plaver Options Plaver Actions All v Tyl E:;I?-: !
7 Auto Muck | Fold Call ($0.5) gﬁ“;‘" bl R i - IS
M sit Out Raise $2 E&fl;er: PrinceiP

Dealer: Avatartest rai
£48.5

Edit

View

Project

Build Debug Team Took Test

TR 9

t_dir

£t EX

nd all "ReadWord", Matc
T:\asc3_traffic_applica

[13008] asc3app.exe

onse transport_type.cpp

Matching lines

Locals Waich1

1] € e

std::
std::
std::
std::
Ciiphoard imag
File Edit View Project Build Debug Team Tools
(<] H D
Process: | [13008] asc3app.exe
sdlc_respanse transport_ type.cpp fio_response transform type.cpp
] viot_dir
1 std:: Sec
‘ std: :u Minute;
CompressAn| stk & toue;
RunCompres|(i Day;
std: :uint8_t Month
‘ std t DayOfWeek;
ReadWord(pl| 6_{ Yean;
6.t n | 16_t LastHeadOffset;
| t HeadOffset;
h CurrentFileIndex;
NumOfDataFiles;
Swapl| WriteBufferToFile;
I - TickAtCaptureTime
| 3 CapturedCibCob
ReadSi
ReadUn CompressAndWriteMain();
{ RunCompressAndWriteMain();
N
cl)
= ReadWord(portable: :StdFile&
|4 n=-1;
[-Read(
‘ [= SwapWords(n);
1 Ma ‘ 3 ;
ReadSizeData(portable::St
ReadUncompressingData(port
WriteWord(portable: :StdFile
WriteSizeData(portable::StdFil
WriteCompressingData(portab
107

fio_response transform_type.cpp

P - & x

Analyze Window Help

-

unmsd

GenlogFile.cpp

asc3_layout.cpp

) Robin Rowe

SECONOLITE®

‘Web Front Panel

il
R, F i < =L

Find Symbol Results

i

T

) 1:44/336

'

PHOTO BY THE US NAVY

Thank youl!

Gabrielle
Pantera

Robin.Rowe@VentureHollyw

