
C++ for Real-Time
Safety-CriƟcal Linux Systems

Robin Rowe & Gabrielle Pantera
Open Source Summit +

Embedded Linux Conference Europe 2020
Tuesday, October 27th, 2020

Te
A

DARPA Humanoid Robots

Bugs and UpƟme

• Fewer lines of code => fewer bugs
• Bug clusters, bugs tend to group
• Technical debt
• Timing errors
• At Google, 70% of failures happen when

releasing a new version of code
• To reach nine 9s we must bank reliability
• Nine 9s is…

 1/10 the Ɵme of the blink of an eye

Availability % Nines

90% 1

99% 2

99.9% 3

99.99% 4

99.999% 5

99.9999% 6

99.99999% 7

99.999999% 8

99.9999999% 9

Safety Standards

•ISO 9001 QA Process
•ISO IEC 23360 Linux LSB
•ISO 13485 Medical SoŌware
•DO-178 AviaƟon SoŌware
•ISO 26262 AutomoƟve SoŌware
•DOT ITS ATC AutomoƟve Traffic Light SoŌwa
•MISRA C
•Future: ISO 56007 InnovaƟon Idea Managem

Process Types

•Agile
•Waterfall
•Unstructured

What process do we have?

Unstructured Process Indicators

• No specific goals
• Top-down direcƟves out of sync with condiƟons on the ground
• Deadlines and milestones seem incomprehensible to team
• No lessons learned, keep trying harder with the same plan
• Death marches, deadlines slide as the plan remains unchanged
• Personal baggage, team stressed out, mentally checked out, or
• ExpectaƟons of project failure voiced at meeƟngs
• Managers consumed with puƫng out fires and reproaching tea
• Team doesn’t know what the managers are doing
• Budget out of control, binge spending, illogical cost-cuƫng

Waterfall Process Indicators

• Top-down, business requirements provided by leader
• Requirements analysis and wriƩen specificaƟons
• Preliminary Design Review, CriƟcal Design Review
• Charge numbers, Bug tracking
• MicrosoŌ Project, GanƩ charts
• Daily team meeƟngs discuss what happened yesterday
• Managers spend much of their Ɵme absent for planning meeƟ
• Rigid plans that demand sƟcking to the plan no maƩer what
• Big bang finished deliverable, deadlines tend to slip

Waterfall Process
Robert Overc
jumping Niag
great plan ex
his parachute
tested to ope
when wet…

Agile condensed, by agilesista.com Image: Jurgen Appelo, Flick

Agile Process Indicators

• User stories
• Sprints and retrospecƟves
• Release early and oŌen
• Pair programming
• Kanban boards
• MeeƟngs are forward-looking or retrospecƟves
• Cloud-based project management

• JIRA
• Git

Why Do We Like C++?

• Performance: 10x faster typical

• 20 million C++ programmers

• Object-oriented design safety

• Reliability: extensive set of tools for debug/test

• C++ leads motion picture visual effects, VR and autonom

• C++ everywhere: Windows, MacOS, Linux, iOS, Android,

systems, IoT, cloud, aerospace, AI, databases

Object-Oriented Design

• SoŌware that snaps together like Legos
• Nouns are classes, verbs are funcƟons
• EncapsulaƟon hides data from code that shouldn’t change it
• C++ is as easy as PIE:

• Polymorphism
• Inheritance
• EncapsulaƟon

• Elegant design simplicity is what’s leŌ aŌer removing complexi

“The most important single aspect of soŌware
development is to be clear about what you are
trying to build.” -- Bjarne Stroustrup

Embedded Systems Design

• Code design: think small, think fast
• Avoid the heap aŌer main()
• Avoid terminaƟon, and therefore excepƟons
• If rebooƟng is feasible, use a Highlander for auto-restart
• Avoid implicit iniƟalizaƟon of staƟc objects before main(),
• Bring-up: iniƟalize explicitly in main()
• Avoid senseless opƟmizaƟons, profile and test
• Avoid risky coding pracƟces
• Use type-safety, encapsulaƟon, be const-correct

Safety-CriƟcal C++ Concepts

• EncapsulaƟon
• Memory Management
• Thread Management
• Hard and SoŌ Real-Ɵme
• StaƟc Analysis
• Single codebase on Linux, Windows, Mac, embedded
• Audit, SimulaƟon, Playback
• SQA, Unit and Regression

C++ Type-Safety

• Locks out incompaƟble code
• Typical type errors will be found

at compile Ɵme
• A major way of staƟc checking
• We can sƟll cast, when we must
• sizeof(ptr) unknowable
• Use intptr_t type

C++ EncapsulaƟon

• WaterƟght compartments
• Classes and objects

• private
• protected
• public

• EncapsulaƟon is a form of data hiding
• EncapsulaƟon can ensure consistency of state
• Don’t use inheritance where you mean encapsulaƟon
• const is also a form of encapsulaƟon

C++ Memory Management

• Stack: Temporary, Fixed Size
• Failure consequence is stack overflow, a crash

• StaƟc: Forever, fixed size
• Failure consequence is program too big to load

• Heap: Can vary in Ɵme and space
• Failure consequence is null pointer or excepƟon
• FragmentaƟon possible
• Memory leak possible
• unique_pointer<> leaves no garbage to collect
• shared_pointer<> useful for removing leaks in legacy code

Don’t tell anyone…
I actually forget lo

C++ Concurrency

• Message queues
• Threads, join() or detach()
• Mutex
• Locks
• CondiƟon Variable
• Lockfree
• Double-buffering
• volatile and <atomic>

C++ Pointers

• Avoid garbage by using unique_pointer<>
• Avoid wild pointers by poinƟng to nullptr in constructor
• Avoid dangling pointers by nulling aŌer release
• Hide pointers by making them private
• Where a pointer could never be null, use references instead
• Avoid unintended modificaƟons by using const
• Trace in a debugger all code you write that does pointer math

C++ CasƟng

• We don’t want any, but someƟmes…
• Indispensable for coping with legacy design issues
• C-style casts: (int) x
• C++ constructor casts: int(x)
• const_cast<> to cast away const
• static_cast<> is like a C cast
• reinterpret_cast<> made for void* casts
• dynamic_cast<> returns 0 if fails, for up-casts
• Use funcƟon templates to block integer casts

C++ ExcepƟons, Don’t

•signal in a type-safe way
•return false is 10x faster and easier to trac
•Use to add simplisƟc error handling to legacy cod
•C++ excepƟons are terminaƟon-based, if a secon

throw happens before the first throw is caught, p
• If we don’t like new because it can be slow and

terminate unexpectedly, we don’t like throw fo
same reasons

TesƟng Methods

•Tracing
•Unit
•Stress
•Regression
•Monkey
•Screen scraping
•Keyboard/mouse macros
•Catch library

C++ Traps

• Infinite loop
• Recursion
• Casts
• Wild pointers
• Segfault, division by zero, FPE, fatal cache miss
• IniƟalizaƟon before main()
• Complexity and obfuscaƟon
• Cohesion vs. spagheƫ code

Agile Safety-CriƟcal Mindset

“How could you not select a guy who wears a
woman's hair band for sunglasses?”

“But, seriously, Geordi saved the Enterprise from
certain doom in countless episodes. Sure, so did
ScoƩy. But Geordi did not whine about it like
ScoƩy, ‘Captain, I'm giving her all she's got… She
can't take much more.’ Nope. Geordi just got 'er
done. As ridiculous as that visor Geordi sported
looked, it enabled him to see things that other
crew members could not.”
 LaVar Burton

LaVar Burto

A charmingly
session in th

Real Life C++ Examples

• Literally Everything Depends on C++

• Real-Time Systems

• Safety-Critical Systems

• Embedded Systems

• Financial Systems

• Critical Infrastructure

• Let’s Look at Some Systems I’ve Touched…

Mt Huashan

Casino Gaming

Traffic
Smar

USS Lin
Global
and Co
System

Thank you!

Robin
Rowe

Gabrielle
Pantera Robin.Rowe@VentureHollyw

