The Future of Linux on RISC-V

Drew Fustini <dfustini@baylibre.com>

Slides: https://tinyurl.com/rv-linux-21
$ whoami

- Linux kernel developer, BayLibre
 - Five team members presenting at ELC this week
 - Neil Armstrong yesterday: Introduction to Pin Muxing and GPIO Control Under Linux
 - Bartosz Golaszewski tomorrow, Wednesday, at 10:30am
 “Plan to Throw One Away” – Pitfalls of API Design for Low-level User-space Libraries and Kernel Interfaces
 - Kevin Hilman & Alexandre Mergnat tomorrow, Wednesday, at 2:45pm
 A New user(space): Adding RISC-V Support to Zephyr RTOS
$ whoami

- Board of Directors, BeagleBoard.org Foundation
 - BeagleV initiative to create open source hardware RISC-V boards
- Board of Directors, Open Source Hardware Association (OSHWA)
 - OSHW Certification Program (certification.oshwa.org)
- RISC-V Ambassador for RISC-V International
RISC-V this week (virtual)

- **Perf on RISC-V: The Past, the Present and the Future**
 - Monday, September 27, 11:15am - 12:05pm (Atish Patra & Anup Patel)

- **Building a Low-key XIP-enabled RISC-V Linux System**
 - Tuesday, September 28, 4:00pm - 4:50pm (Vitaly Vul)

- **Initializing RISC-V: A Guided Tour for ARM Developers**
 - Tuesday, September 28, 5:00pm - 5:50pm (Ahmad Fatoum & Rouven Czerwinski)

- **A New user-space: Adding RISC-V Support to Zephyr RTOS**
 - Wednesday, September 29, 2:45pm - 3:35pm (Kevin Hilman & Alexandre Mergnat)
RISC-V this week (in-person)

- How the Fastest Growing Open Hardware Project is Leveraging Visibility [..]
 - Tuesday, September 28, 11:25am - 11:50am (Kim McMahon, RISC-V International)

- Growing Diversity in Open Hardware: It’s a Task for All of Us!
 - Tuesday, September 28, 12:25pm - 12:50pm (Kim McMahon, RISC-V International)
 - Open Hardware Diversity Alliance formed in August for “professional advancement of women and underrepresented individuals in open source hardware.”

- Open Hardware: Skyrocketing Momentum and Global Adoption from Embedded to Enterprise
 - Tuesday, September 28, 4:00pm - 4:50pm (Calista Redmond, CEO RISC-V Intl.)
RISC-V this week (in-person)

- Open Software, Open Hardware with RISC-V and Zephyr communities
 - Thursday, September 30, 9:00 AM – 12:30 PM
 - Pre-registration is required. To register, add it to your OSS + ELC registration
 - 9:00 - 9:30: Coffee networking
 - 9:30 - 9:45: Welcome / keynote
 - 9:45 - 11:00: Breakouts to tables for table talks / BoF
 - 11:00 - 12:00: Demos and lightning talks
 - 12:00 - 12:30: Coffee networking
RISC-V last week

- Linux Plumbers Conference: RISC-V microconference
 - Live stream on YouTube, Detailed notes with links
 - Sessions
 - The RISC-V platform specification
 - ACPI for RISC-V
 - What's the problem with D1 Linux upstream?
 - Puzzle for RISC-V ifunc
 - Towards continuous improvement of code-generation for RISC-V
RISC-V (virtual) meetups around the world

<table>
<thead>
<tr>
<th>City/Region</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Bay Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Boston RISC-V Group, MA</td>
<td>United States</td>
</tr>
<tr>
<td>New York City RISC-V Group, NY</td>
<td>United States</td>
</tr>
<tr>
<td>Toronto RISC-V Group, ON</td>
<td>Canada</td>
</tr>
<tr>
<td>Twin Cities RISC-V Group, MN</td>
<td>United States</td>
</tr>
<tr>
<td>Austin Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Bay Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Boston RISC-V Group, MA</td>
<td>United States</td>
</tr>
<tr>
<td>New York City RISC-V Group, NY</td>
<td>United States</td>
</tr>
<tr>
<td>Toronto RISC-V Group, ON</td>
<td>Canada</td>
</tr>
<tr>
<td>Twin Cities RISC-V Group, MN</td>
<td>United States</td>
</tr>
<tr>
<td>Austin Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Bay Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Boston RISC-V Group, MA</td>
<td>United States</td>
</tr>
<tr>
<td>New York City RISC-V Group, NY</td>
<td>United States</td>
</tr>
<tr>
<td>Toronto RISC-V Group, ON</td>
<td>Canada</td>
</tr>
<tr>
<td>Twin Cities RISC-V Group, MN</td>
<td>United States</td>
</tr>
<tr>
<td>Austin Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Bay Area RISC-V Group</td>
<td>United States</td>
</tr>
<tr>
<td>Boston RISC-V Group, MA</td>
<td>United States</td>
</tr>
<tr>
<td>New York City RISC-V Group, NY</td>
<td>United States</td>
</tr>
<tr>
<td>Toronto RISC-V Group, ON</td>
<td>Canada</td>
</tr>
<tr>
<td>Twin Cities RISC-V Group, MN</td>
<td>United States</td>
</tr>
</tbody>
</table>

Find many more at: https://community.riscv.org/
RISC-V Open Hours

- Bi-weekly meetup to provide the opportunity for the community to interact in real-time, with a particular focus on RISC-V support in open source software projects and RISC-V development boards.
- Join the [mailing list](#) for announcements and discussion
- **Wednesday, Oct 13, 7:00 PM (US PDT)** which is Thursday morning in Asia
- **Wednesday, Nov 3, 8:00 AM (US PDT)** which is European late afternoon
RISC-V: a Free and Open ISA

- **Started in 2010** by computer architecture researchers at UC Berkeley
 - Krste Asanovic - [RISC-V: The Next Ten Years](https://example.com)

- Why “RISC”?
 - RISC = Reduced Instruction Set Computer

- Why “V”?
 - 5th RISC instruction set to come of out UC Berkeley

- Why is it “Free and Open”?
 - Specifications licensed as Creative Commons Attribution 4.0 International
What is different about RISC-V?

- Simple, clean-slate design
 - Avoids micro-architecture dependent features
- Small standard base, with multiple standard extensions
 - Suitable for everything from tiny microcontrollers to supercomputers
- Stable
 - Base and standard extensions are frozen
 - Additions via optional extensions, not new versions of base ISA
RISC-V Base Integer ISA

- **RV32I**: 32-bit
 - less than 50 instructions needed!
- **RV64I**: 64-bit
 - Most important for Linux
- **RV128I**: 128-bit
 - Future-proof address space
RISC-V Standard Extensions

- M: integer multiply/divide
- A: atomic memory operations
- F, D, Q: floating point, double-precision, quad-precision
- G: “general purpose” ISA, equivalent to IMAFD
- C: compressed instructions conserve memory & cache like ARM Thumb
- Linux distros like Debian and Fedora target RV64GC
Learn more about RISC-V

- Get up-to-speed quick with the **RISC-V Reader**:

 riscvbook.com
“Is RISC-V an Open Source processor?”

- RISC-V is a set of specifications under an open source license
- RISC-V implementations can be open source or proprietary
- **Open specifications make open source implementations possible**
- An open ISA enables open source processor implementations
RISC-V Privileged Architecture

- Ratified specification
 - RISC-V Instruction Set Manual Volume II: Privileged Architecture

- Three privilege modes
 - User (U-mode): applications
 - Supervisor (S-mode): OS kernel
 - Machine (M-mode): firmware

(source: Co-developing RISC-V Hypervisor Support, Anup Patel)
RISC-V Boot Flow

- M-mode: boot ROM and first-stage bootloader
- S-Mode: U-Boot loads and jumps to the Linux kernel
- Similar flow to ARM SoC but something new in the middle: SBI

(source: RISC-V software ecosystem in 2020, Atish Patra)
What is SBI?

- **Supervisor Binary Interface** is a non-ISA RISC-V specification
- The calling convention between S-mode and M-mode allows S-mode software like the Linux to be portable across RISC-V implementations by abstracting platform specific functionality.

![Diagram showing the relationship between U-mode, S-mode, M-mode, Applications, System Calls, Operating System Kernel, SBI, and Platform Runtime Firmware (SEE) in the context of SBI.]
What is SBI?

- SBI is required by the [UNIX-Class Platform Specification](#).
 - Mailing list: [tech-unixplatformspec](#).
 - This will be replaced by upcoming [RISC-V Platform Specification](#).

- Base Extension
 - query SBI specification version and implementation
 - query machine vendor, architecture and implementation

- Timer Extension, IPI Extension, RFENCE Extension
What is OpenSBI?

- **OpenSBI** is an open source SBI implementation
- Layers of implementation
- Provides run-time service in M-mode

(source: [OpenSBI Deep Dive](https://example.com), Anup Patel)
OpenSBI Generic Platform

- Preference is to use **Generic platform** when possible
- Device Tree based platform where all platform specific functionality is based on DT passed by the previous boot stage.
- Generic platform allows us to use the same OpenSBI firmware binaries across a variety of emulators and dev boards

RISC-V systems using Generic Platform

- QEMU, Spike simulator, SiFive HiFive Unleashed, Alibaba T-HEAD C9xx based boards
Hypervisor extension

- Hypervisor Supervisor (HS-mode) and Virtualized Supervisor (VS-mode)
 - Included in Privileged 1.12 spec, currently in 45 day public review before ratification

Figure 2. RISC-V System with H-extension
What is new in SBI?

- **v0.3**
 - Suspend added to Hart State Management (HSM)
 - Performance Monitoring Unit (PMU)
 - System reset extension

NOTE: Hart is a hardware thread

- Hardware execution context that contains state mandated by ISA: PC and registers
- My laptop has 4 cores, each of core has two hyperthreads, so it could be described as having 8 harts if it was RISC-V (e.g. the number of penguins on the boot screen)
OpenSBI Domain Support

- An **OpenSBI domain** is a system-level partition (subset) of underlying hardware having its own memory regions and HARTs

- Talk by Anup Patel
UEFI Support

- **U-Boot** and **TianoCore edk2** both have UEFI implementations on RISC-V
- **Grub2** can be an UEFI payload on RISC-V
- **UEFI support for RISC-V** added in **Linux 5.10**

(source: *Introduction to RISC-V Boot Flow*, Atish Patra and Anup Patel)
Support for **RISC-V in mainline QEMU**

- QEMU can boot 32-bit and 64-bit mainline Linux kernel
- QEMU sifive_u machine can boot same binaries as the HiFive Unleashed board
- Draft versions of Hypervisor and Vector extensions supported

Embedded Linux from scratch in 45 minutes on RISC-V!

- Tutorial by By Michael Opdenacker from Bootlin at FOSDEM 2021
RISC-V in the Linux kernel

- Initial port by Palmer Dabbelt merged in Linux 4.15
 - Mailing list: linux-riscv@lists.infradead.org (archive)
- "What's missing in RISC-V Linux, and how YOU can help!"
 - Björn Töpel at Munich RISC-V meetup (jump to 43:25)
 - "It's a fun, friendly, and still pretty small community"
 - "A great way to learn the nitty gritty details of the Linux kernel"
Kernel feature support for riscv arch (v5.12-rc2)
RISC-V in the Linux kernel

- KVM support for the Hypervisor spec (Anup Patel/Atish Patra)
 - [PATCH v20 00/17] KVM RISC-V Support

- Vector ISA support based on the draft vector extension (Greentime Hu)
 - [RFC PATCH v8 00/21] riscv: Add vector ISA support
Linux distro: Fedora

- "This project, informally called Fedora/RISC-V, aims to provide a complete Fedora experience on the RISC-V (RV64GC)"

(source: Fedora on RISC-V, Wei Fu)
Linux distro: Fedora

- QEMU and libvirt
 - Fedora images can run on QEMU with graphics
- Real hardware
 - HiFive Unleashed, HiFive Unmatched, and more
- [Installation instructions](source:Fedora on RISC-V, Wei Fu)
Linux distro: Debian

- Port of Debian for the RISC-V architecture called **riscv64**
 - “a port in Debian terminology means to provide the software normally available in the Debian archive (over 20,000 source packages) ready to install and run”

- 95% of packages are built for RISC-V
 - The Debian port uses RV64GC as the hardware baseline and the **lp64d ABI**
Additional Linux distros

- **Ubuntu 21.04** supports QEMU and SiFive boards
- **OpenSuSE** is under development and considered an early preview
- **Gentoo** has riscv64 stages available to download
- **Arch Linux** is in experimental development
OpenEmbedded / Yocto

- **meta-riscv**: general hardware-specific BSP overlay for RISC-V devices
 - works with different OpenEmbedded/Yocto distributions and layer stacks
 - Supports both QEMU and real boards like SiFive HiFive Unleashed
BuildRoot

- RISC-V port is now supported in the upstream BuildRoot project
- “Embedded Linux from scratch in 45 minutes (on RISC-V)”
 - Tutorial by Michael Opdenacker of Bootlin
 - Use Buildroot to compile OpenSBI, U-Boot, Linux and BusyBox
 - Boot the system in QEMU

BuildRoot
Making Embedded Linux Easy
SiFive Freedom Unleashed

- The first Linux-capable RISC-V dev board
 - And the board design is Open Source Hardware!
- High performance compared to FPGA
 - FU540 SoC clocked over 10x faster than FPGA ‘soft’ cores
- Too expensive for widespread adoption
 - Sold for $999 on CrowdSupply and no longer available
 - FU540 SoC chip is not sold separately
 - SiFive core business is designing cores, not SoC’s or boards

NOTE: ASIC often used to indicate that an SoC (System-on-Chip) has a “hard” processor core constructed by silicon fab instead of “soft” core in an FPGA
SiFive Freedom Unleashed

- Fedora GNOME image running on Unleashed with PCIe graphics card
Microchip PolarFire SoC

- Same cores as the SiFive FU540 but adds a FPGA fabric
 - 4x 667 MHz U54 cores, 1x E51 core
 - FPGA with 25k to 460k logic elements (LEs)
 - Supports DDR4 and PCIe Gen2
- Full commercial product family
 - Available from distributors
 - From the former Microsemi business unit
Microchip Icicle board

- **PolarFire SoC dev board**
 - $499 on CrowdSuppy
 - MPFS250T-FCVG484EES
 - 600 MHz clock RISC-V cores
 - 254K logic element FPGA

- **Memory**
 - 2 GB LPDDR4 x 32
 - 8 GB eMMC flash and SD card
Kendryte K210

- **400MHz dual core RV64GC**
 - 8MB SRAM and no DRAM interface
- Affordable dev boards
 - Sipeed MAiX BiT is only $13
- Full support added in [Linux 5.8](https://www.linuxfoundation.org/)
 - RISC-V NOMMU and M-Mode Linux talk by Damien Le Moal at LPC 20219
- 5 boards supported in [u-boot](https://www.uboot.org/)
Kendryte K210

- **Buildroot with busybox** for rootfs
 - upstreaming in progress by Damien on buildroot list: [Add RV64 NOMMU and Canaan K210 SoC support](#)
- Damien Le Moal created a **6 DoF robotic arm**
- **8MB of RAM runs out very quick!**
 - No shared libraries as MMU implements draft spec not supported by Linux
 - [Add risc-v support to elf2flt](#): ELF to bFLT (binary flat) converter for no-mmu Linux targets
SiFive Unmatched

- **$665 on CrowdSupply**
 - Shipping from Mouser too
- SiFive Freedom FU740 SoC
 - 4x U74 RV64GC application cores
 - 1x S7 RV64IMAC embedded core
SiFive Unmatched

- Mini-ITX PC form factor
 - 8GB DDR4 RAM
 - 4x USB 3.2 Gen 1 ports
 - Gigabit Ethernet
 - x16 PCIe Gen 3 Expansion Slot
 - M.2 connector for NVMe SSD
 - M.2 connector for WiFi/Bluetooth
Alibaba T-Head XuanTie 910

- **T-Head** is a subsidiary of Alibaba
- **16-core 2.5 GHz RISC-V processor**
 - Implementation of draft Vector extension
 - Performance comparable to Arm Cortex-A73
 - Paper: *Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with Vector Extension*
Android on T-Head C910 SoC

- T-Head has ported Android 10 (AOSP) to RISC-V architecture!
T-Head ICE Evaluation Board

- **ICE EVB** is a XuanTie C910 based high performance SoC board developed by T-Head

- Dual core T-Head XuanTie C910@1.2GHz
- Extra C910V@1.2GHz core with vector extension, up to 128bit
- DDR4 with speed up to 2400Mbps
- Support GMAC interface
- Support GPU and 3D
- Display: RGB888 LED, 1080P
- Chip size: 15x15mm
- Process: 28HPC+
T-Head XuanTie C906

- RV64GCV, 5-stage, in-order pipeline, up to 1GHz, single-core
Allwinner D1 SoC

- **Allwinner D1** has single T-Head C906 (RV64GCV) core at 1 GHz
Allwinner Nezha D1 dev board

- **Nezha dev board** made by AWOL (Allwinner Online) with Allwinner D1
- Starter kit bundle for at $115 on AliExpress

- Main control: Allwinner D1 C906 RISC-V 1GHz
- DRAM: DDR3 1GB/2GB
- Storage: Onboard 256MB spi-nand, support USB external U disk and SD card to expand storage
- Network: Support Gigabit Ethernet, support 2.4G WiFi and Bluetooth, onboard antenna
- Display: Support MIPI-DSI+TP screen interface, support HDMI output, support SPI screen
- Audio: Microphone daughter board interface *1, 3.5mm headphone jack *1 (CTIA)
- Board size: length 85mm width 56mm thickness 1.7mm
- PCB layer: 6 layers
- Support Tina Linux, based on Linux 5.4 kernel
RISC-V International developer board program

- **RISC-V Developer Boards initiative** from RISC-V International to get Linux capable boards into developers’ hands!
 - Launched with the Allwinner D1 Nezha board and SiFive Unmatched (*limited qty*)

- Fill out the **RISC-V Developer Boards form**
 - Preference is to be RISC-V International member or from a RISC-V International member organization. **NOTE: individuals can join RVI free of cost!**
 - Explain why you are interested in a RISC-V board and what you plan to do with it
 - For example, adding RISC-V support to an upstream open source software project
 - Don’t overestimate the hardware specs you actually need like RAM
Allwinner D1 open source community

- **linux-sunxi**: strong open source community for Allwinner SoCs
 - D1 wiki page
 - Allwinner Nezha board wiki page
- **Samuel Holland** has been working on getting mainline to run
 - SPL: https://github.com/smaeul/sun20i_d1_spl
 - OpenSBI: https://github.com/smaeul/opensbi
 - Linux 5.14-rc4: https://github.com/smaeul/linux/tree/riscv/d1-wip
Fedora on Allwinner Nezha D1 board

- Fedora wiki: [Architectures/RISC-V/Allwinner](https://wiki.fedora-project.org/wiki/Architectures/RISC-V/Allwinner)
 - Wei Fu (*RISC-V Ambassador and RedHat engineer*) has created rawhide XFCE image and produced great documentation of the boot flow and SD card partition layout.
Challenges for Allwinner D1 and T-Head C906

- “What's the problem with D1 Linux upstream?” last week at Plumbers
 - Guo Ren (Alibaba T-Head), Liu Shaohua (Allwinner), Wei Fu (Red Hat/Fedora)
 - Slides in Google Slides and PDF, jump to 2h 28 min the live stream recording
 - Peripherals are mostly reused from existing ARM SoC so not much worked needed
 - T-Head C9xx core performance functionality that's not critical to boot upstream:
 - Instructions to accelerate I-cache synchronization
 - Instructions to accelerate TLB synchronization
 - Vector 0.7.1 draft spec
How to handle non-coherent interconnects?

- T-Head designed C9xx cores in 2019 and there was no spec on how to handle DMA on a RISC-V system with non-coherent interconnects.
- Non-coherent interconnects can make it possible to have low cost SoC.
- However, the RISC-V Privileged spec wrote: “In RISC-V platforms, the use of hardware-incoherent regions is discouraged due to software complexity, performance, and energy impacts.”
- Guo Ren posted [PATCH] riscv: Support non-coherency memory model in 2019 but a RISC-V extension for this was still in an early phase.
A proposal arose in the RISC-V Virtual Memory Task Group

- "PBMT" extension proposal to support Page-Based Memory Types (aka "page-based attributes")

- SvPBMT extension is now frozen and in a 45 day public review period
PTE format: T-Head vs. PBMT

- Standard PBMT and D1 custom PTE use the highest bits to determine memory type. But the encoding and semantics are different.
PTE format: T-Head vs. PBMT

- Guo Ren has posted implementation for standard PBMT:
 - [PATCH V2 1/2] riscv: Add RISC-V svpbmt extension

- Watch linux-riscv mailing list for further discussion
No hardware? Try Renode!

- **Renode** can simulate physical hardware systems including CPU, peripherals, sensors, and networking.
<table>
<thead>
<tr>
<th>Source: Renode supported boards</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiFive HiFive1</td>
</tr>
<tr>
<td>single-node/sifive_fe310.resc</td>
</tr>
<tr>
<td>SiFive HiFive Unleashed</td>
</tr>
<tr>
<td>single-node/hifive_unleashed.resc</td>
</tr>
<tr>
<td>Microchip PolarFire SoC</td>
</tr>
<tr>
<td>Hardware Development Platform</td>
</tr>
<tr>
<td>single-node/polarfire-soc.resc</td>
</tr>
<tr>
<td>Toradex Colibri T30</td>
</tr>
<tr>
<td>single-node/tegra3.resc</td>
</tr>
<tr>
<td>OpenISA VEGAbord</td>
</tr>
<tr>
<td>single-node/vegaboard_rISCy.resc</td>
</tr>
<tr>
<td>Intel Quark SE</td>
</tr>
<tr>
<td>Microcontroller Evaluation Kit C1000</td>
</tr>
<tr>
<td>single-node/quark_c1000.resc</td>
</tr>
<tr>
<td>Fomu</td>
</tr>
<tr>
<td>LiteX/VexRiscv on Digilent Arty</td>
</tr>
<tr>
<td>Xilinx ZedBoard</td>
</tr>
</tbody>
</table>
How to get involved with RISC-V International?

- **Individuals and non-profits can join free of cost**
- **RISC-V Technical wiki landing page** is the single best place to remember
 - Technical Organization charts
 - ISA Extensions On Deck for Freeze Milestone for 2021 ratification
 - RISC-V Technical Working Groups
 - RISC-V extension and feature support
 - RISC-V Software Ecosystem
How to get involved with RISC-V International?

- **RISC-V Working Groups mailing list server**
 - **From riscv.org**: The work done within RISC-V International is organized on our groups server at lists.riscv.org. This includes mailing lists, file storage, meetings and calendar invitations, and archives, among other things. Groups are organized into a hierarchy by functional area. New groups are proposed and approved through the TSC (technical groups) or the Board of Directors (non-technical groups)."
 - All RISC-V technical committees and work groups are non-confidential – list traffic, meeting minutes, and deliverables are public.
 - Active participation on lists and meetings is limited to RISC-V members.
How to get involved with RISC-V International?

- Many groups have bi-weekly or monthly meetings
- **Technical Meetings Calendar** (NEW!)
 - ICS File
 - Google Subscribe Link
 - Note: **Tech Groups Calendar** is OLD and not used anymore
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 29</td>
<td>8am</td>
<td>tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Fast Interrupts TG Meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>ptABI TG</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Platform HSC Bi-Weekly Meeting</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>Toolchain & Runtime TS Bi-Weekly Min</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>CMO TG Meeting</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>RISC-V Development Partners</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Debug Task Group call</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Fast Interrupts TG Meeting</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>Toolchain & Runtime TS Bi-Weekly Min</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>RISC-V Labs - Collaboration / CI / Testing</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Security Technologies SIG</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Platform HSC Bi-Weekly Meeting</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>Toolchain & Runtime TS Bi-Weekly Min</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>RISC-V Development Partners</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Debug Task Group call</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Fast Interrupts TG Meeting</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>Toolchain & Runtime TS Bi-Weekly Min</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>Processor Trace Call</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>TEE TG Weekly</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Fast Interrupts TG Meeting</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>Toolchain & Runtime TS Bi-Weekly Min</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>RISC-V Development Partners</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Debug Task Group call</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Fast Interrupts TG Meeting</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>Toolchain & Runtime TS Bi-Weekly Min</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>Tech-config meeting</td>
</tr>
<tr>
<td></td>
<td>6am</td>
<td>Processor Trace Call</td>
</tr>
<tr>
<td></td>
<td>8am</td>
<td>TEE TG Weekly</td>
</tr>
<tr>
<td></td>
<td>9am</td>
<td>Fast Interrupts TG Meeting</td>
</tr>
</tbody>
</table>
Cache Management Operations (CMO) TG

- Important for SoC’s that lack cache coherent interconnects
- Zicmobase extension adds a base set of instructions and CSRs to handle Cache Block operations like invalidate, clean and flush
- Now frozen and under 45 day public review
- What about existing SoCs?
 - It is possible trap and emulate these new instructions in SBI once frozen
- Mailing list: tech-cmo, next task group meeting: Oct 11
Advanced Interrupt Architecture SIG

- **RISC-V Advanced Interrupt Architecture (AIA)**
 - APLIC: Advanced Platform-Level Interrupt Controller
 - IMSIC: Incoming Message-Signaled Interrupt Controller
 - Mailing list: tech-aia

- **ACLINT (Advanced Core Local Interruptor)**
 - Backwards compatible with the SiFive CLINT but restructured as 3 devices: MTIMER (M-mode timer), MSWI (M-mode software interrupts), SSWI (S-mode software interrupts)
 - Discussion of ACLINT occurs on the RISC-V Unix Platform Mailing list
Advanced Interrupt Architecture SIG

- **Next Generation RISC-V Interrupt Support** talk by Anup Patel
 - Last week at Plumbers: [live stream recording](#)

AIA & ACLINT for OS-A platforms

Possible uses of AIA and ACLINT in OS-A platforms

<table>
<thead>
<tr>
<th>OS-A Platforms</th>
<th>MSIs</th>
<th>Wired Interrupts</th>
<th>IPIs</th>
<th>Timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy Wired IRQs</td>
<td>NA</td>
<td>NA</td>
<td>PLIC</td>
<td>PLIC</td>
</tr>
<tr>
<td>Only Wired IRQs</td>
<td>NA</td>
<td>NA</td>
<td>APLIC M-level Phase1</td>
<td>APLIC S-level Phase1</td>
</tr>
<tr>
<td>MSIs and Wired IRQs</td>
<td>IMSIC M-file Phase1</td>
<td>IMSIC S-file Phase1</td>
<td>IMSIC S-file (Emulate) Phase2</td>
<td>APLIC M-level Phase1</td>
</tr>
<tr>
<td>MSIs, Virtual MSIs and Wired IRQs</td>
<td>IMSIC M-file Phase1</td>
<td>IMSIC S-file Phase1</td>
<td>IMSIC S-file (Emulate) Phase2</td>
<td>APLIC M-level Phase1</td>
</tr>
</tbody>
</table>
RISC-V Platform Specification

- **Platform horizontal steering committee (HSC)**
 - standardize the interface between hardware platforms and OS like Linux
 - [agenda and minutes on wiki](#) for bi-weekly meetings chaired by Kumar Sankaran
 - Recordings for past meetings [available in Google Drive](#)
 - [Slides](#) from past meetings are online
 - Mailing list: [tech-unixplatformspec](#)
RISC-V Platform Specification

- **OS-A Platform**: to run full OS like Linux, BSD, Windows
 - RVA22U [profile](#) for user-mode.
 - RVA22S [profile](#) for supervisor-mode.
 - RVM20M64 [profile](#) for machine-mode.
 - Must comply with [Embedded Base Boot Requirements (EBBR) Specification](#).
 - Optional server extension mandates additional requirements like ACPI

- **M Platform**: to run bare-metal applications or RTOS on microcontroller
RISC-V Platform Specification

- Session in RISC-V microconference at Linux Plumbers Conference
RISC-V Platform Specification

- ACPI for RISC-V at Linux Plumbers Conference

Proof of Concept

QEMU
- ACPI Tables – RSDP, XSDT, FADT, DSDT, MADT, RTDT, MCFG
- MADT:
 - Per-hart INTC
 - IMISC
 - Per-socket APLIC
- DSDT:
 - Processors
 - APLIC with _MAT
 - Generic 16550a UART(PNPOS0) with _DSD method
 - Virtio

EDK2
- Integrated OpenSBI with AIA support
- ACPI enablement (AcpiTableDxe, QemuFiwCfg)
- SMBIOS enablement

Linux
- Basic ACPI enablement for RISC-V (ACPICA and ARCH specific ACPI)
- ACPI based timer driver (RTDT)
- ACPI based INTC Driver
- ACPI based IMISC driver
- ACPI based APLIC driver
- SMBIOS enablement
- Hart capabilities using SMBIOS table 44
RISC-V at Linux Plumbers Conference

- Live stream on YouTube, Detailed notes with links
 - Sessions
 - The RISC-V platform specification
 - ACPI for RISC-V
 - What's the problem with D1 Linux upstream?
 - Puzzle for RISC-V ifunc
 - Towards continuous improvement of code-generation for RISC-V